| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > distoah1 | GIF version | ||
| Description: Satisfaction of distributive law hypothesis. (Contributed by NM, 29-Nov-1998.) |
| Ref | Expression |
|---|---|
| distoa.1 | d = (a →2 b) |
| distoa.2 | e = ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) |
| distoa.3 | f = ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) |
| Ref | Expression |
|---|---|
| distoah1 | d ≤ (a →2 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distoa.1 | . 2 d = (a →2 b) | |
| 2 | 1 | bile 142 | 1 d ≤ (a →2 b) |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-t 41 df-f 42 df-le1 130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |