QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  distoah2 GIF version

Theorem distoah2 941
Description: Satisfaction of distributive law hypothesis. (Contributed by NM, 29-Nov-1998.)
Hypotheses
Ref Expression
distoa.1 d = (a2 b)
distoa.2 e = ((bc) →1 ((a2 b) ∩ (a2 c)))
distoa.3 f = ((bc) →2 ((a2 b) ∩ (a2 c)))
Assertion
Ref Expression
distoah2 e ≤ ((bc) →0 ((a2 b) ∩ (a2 c)))

Proof of Theorem distoah2
StepHypRef Expression
1 leo 158 . 2 ((bc) →1 ((a2 b) ∩ (a2 c))) ≤ (((bc) →1 ((a2 b) ∩ (a2 c))) ∪ ((bc) →2 ((a2 b) ∩ (a2 c))))
2 distoa.2 . . 3 e = ((bc) →1 ((a2 b) ∩ (a2 c)))
32ax-r1 35 . 2 ((bc) →1 ((a2 b) ∩ (a2 c))) = e
4 u12lem 771 . 2 (((bc) →1 ((a2 b) ∩ (a2 c))) ∪ ((bc) →2 ((a2 b) ∩ (a2 c)))) = ((bc) →0 ((a2 b) ∩ (a2 c)))
51, 3, 4le3tr2 141 1 e ≤ ((bc) →0 ((a2 b) ∩ (a2 c)))
Colors of variables: term
Syntax hints:   = wb 1  wle 2  wo 6  wa 7  0 wi0 11  1 wi1 12  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i0 43  df-i1 44  df-i2 45  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator