Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > distoah2 | GIF version |
Description: Satisfaction of distributive law hypothesis. (Contributed by NM, 29-Nov-1998.) |
Ref | Expression |
---|---|
distoa.1 | d = (a →2 b) |
distoa.2 | e = ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) |
distoa.3 | f = ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) |
Ref | Expression |
---|---|
distoah2 | e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leo 158 | . 2 ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) ≤ (((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) | |
2 | distoa.2 | . . 3 e = ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) | |
3 | 2 | ax-r1 35 | . 2 ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) = e |
4 | u12lem 771 | . 2 (((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) = ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) | |
5 | 1, 3, 4 | le3tr2 141 | 1 e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 →0 wi0 11 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |