Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oa4lem3 | GIF version |
Description: Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.) |
Ref | Expression |
---|---|
oa4lem1.1 | a ≤ b⊥ |
oa4lem1.2 | c ≤ d⊥ |
Ref | Expression |
---|---|
oa4lem3 | ((a ∪ b) ∩ (c ∪ d)) ≤ ((b ∪ d)⊥ ∪ (((a ∪ c)⊥ →2 b) ∩ ((a ∪ c)⊥ →2 d))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oa4lem1.1 | . . . 4 a ≤ b⊥ | |
2 | oa4lem1.2 | . . . 4 c ≤ d⊥ | |
3 | 1, 2 | oa4lem1 937 | . . 3 (a ∪ b) ≤ ((a ∪ c)⊥ →2 b) |
4 | 1, 2 | oa4lem2 938 | . . 3 (c ∪ d) ≤ ((a ∪ c)⊥ →2 d) |
5 | 3, 4 | le2an 169 | . 2 ((a ∪ b) ∩ (c ∪ d)) ≤ (((a ∪ c)⊥ →2 b) ∩ ((a ∪ c)⊥ →2 d)) |
6 | leor 159 | . 2 (((a ∪ c)⊥ →2 b) ∩ ((a ∪ c)⊥ →2 d)) ≤ ((b ∪ d)⊥ ∪ (((a ∪ c)⊥ →2 b) ∩ ((a ∪ c)⊥ →2 d))) | |
7 | 5, 6 | letr 137 | 1 ((a ∪ b) ∩ (c ∪ d)) ≤ ((b ∪ d)⊥ ∪ (((a ∪ c)⊥ →2 b) ∩ ((a ∪ c)⊥ →2 d))) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |