QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  oa4lem3 GIF version

Theorem oa4lem3 939
Description: Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.)
Hypotheses
Ref Expression
oa4lem1.1 ab
oa4lem1.2 cd
Assertion
Ref Expression
oa4lem3 ((ab) ∩ (cd)) ≤ ((bd) ∪ (((ac)2 b) ∩ ((ac)2 d)))

Proof of Theorem oa4lem3
StepHypRef Expression
1 oa4lem1.1 . . . 4 ab
2 oa4lem1.2 . . . 4 cd
31, 2oa4lem1 937 . . 3 (ab) ≤ ((ac)2 b)
41, 2oa4lem2 938 . . 3 (cd) ≤ ((ac)2 d)
53, 4le2an 169 . 2 ((ab) ∩ (cd)) ≤ (((ac)2 b) ∩ ((ac)2 d))
6 leor 159 . 2 (((ac)2 b) ∩ ((ac)2 d)) ≤ ((bd) ∪ (((ac)2 b) ∩ ((ac)2 d)))
75, 6letr 137 1 ((ab) ∩ (cd)) ≤ ((bd) ∪ (((ac)2 b) ∩ ((ac)2 d)))
Colors of variables: term
Syntax hints:  wle 2   wn 4  wo 6  wa 7  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i2 45  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator