Theorem List for Quantum Logic Explorer - 901-1000 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | go2n6 901 |
12-variable Godowski equation derived from 6-variable one. The last
hypothesis is the 6-variable Godowski equation. (Contributed by NM,
29-Nov-1999.)
|
g ≤ h⊥
& h
≤ i⊥ & i ≤ j⊥
& j
≤ k⊥ & k ≤ m⊥
& m
≤ n⊥ & n ≤ u⊥
& u
≤ w⊥ & w ≤ x⊥
& x
≤ y⊥ & y ≤ z⊥
& z
≤ g⊥ & (((i →2 g) ∩ (g
→2 y)) ∩ (((y →2 w) ∩ (w
→2 n)) ∩ ((n →2 k) ∩ (k
→2 i)))) ≤ (g →2 i) ⇒ (((g ∪ h)
∩ (i ∪ j)) ∩ (((k
∪ m) ∩ (n ∪ u))
∩ ((w ∪ x) ∩ (y
∪ z)))) ≤ (h ∪ i) |
|
Theorem | gomaex3h1 902 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
a ≤ b⊥
& g =
a
& h =
b ⇒ g ≤ h⊥ |
|
Theorem | gomaex3h2 903 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
b ≤ c⊥
& h =
b
& i =
c ⇒ h ≤ i⊥ |
|
Theorem | gomaex3h3 904 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
i = c
& j =
(c ∪ d)⊥ ⇒ i ≤ j⊥ |
|
Theorem | gomaex3h4 905 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
r = ((p⊥ →1 q)⊥ ∩ (c ∪ d))
& j =
(c ∪ d)⊥ & k = r ⇒ j ≤ k⊥ |
|
Theorem | gomaex3h5 906 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
r = ((p⊥ →1 q)⊥ ∩ (c ∪ d))
& k =
r
& m =
(p⊥ →1
q) ⇒ k ≤ m⊥ |
|
Theorem | gomaex3h6 907 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
m = (p⊥ →1 q)
& n =
(p⊥ →1
q)⊥ ⇒ m ≤ n⊥ |
|
Theorem | gomaex3h7 908 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
n = (p⊥ →1 q)⊥ & u = (p⊥ ∩ q) ⇒ n ≤ u⊥ |
|
Theorem | gomaex3h8 909 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
u = (p⊥ ∩ q)
& w =
q⊥ ⇒ u ≤ w⊥ |
|
Theorem | gomaex3h9 910 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
w = q⊥
& x =
q ⇒ w ≤ x⊥ |
|
Theorem | gomaex3h10 911 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
q = ((e ∪
f) →1 (b ∪ c)⊥
)⊥
& x =
q
& y =
(e ∪ f)⊥ ⇒ x ≤ y⊥ |
|
Theorem | gomaex3h11 912 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
y = (e ∪
f)⊥ & z = f ⇒ y ≤ z⊥ |
|
Theorem | gomaex3h12 913 |
Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
f ≤ a⊥
& g =
a
& z =
f ⇒ z ≤ g⊥ |
|
Theorem | gomaex3lem1 914 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
c ≤ d⊥ ⇒ (c ∪ (c
∪ d)⊥ ) = d⊥ |
|
Theorem | gomaex3lem2 915 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
e ≤ f⊥ ⇒ ((e ∪ f)⊥ ∪ f) = e⊥ |
|
Theorem | gomaex3lem3 916 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q)) = p⊥ |
|
Theorem | gomaex3lem4 917 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
p = ((a ∪
b) →1 (d ∪ e)⊥
)⊥ ⇒ ((a ∪ b)
∩ (d ∪ e)⊥ ) ≤ p⊥ |
|
Theorem | gomaex3lem5 918 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& e
≤ f⊥ & f ≤ a⊥
& (((i
→2 g) ∩ (g →2 y)) ∩ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i)))) ≤ (g
→2 i) & p = ((a ∪
b) →1 (d ∪ e)⊥
)⊥
& q =
((e ∪ f) →1 (b ∪ c)⊥
)⊥
& r =
((p⊥ →1
q)⊥ ∩ (c ∪ d))
& g =
a
& h =
b
& i =
c
& j =
(c ∪ d)⊥ & k = r
& m =
(p⊥ →1
q)
& n =
(p⊥ →1
q)⊥ & u = (p⊥ ∩ q)
& w =
q⊥ & x = q
& y =
(e ∪ f)⊥ & z = f ⇒ (((g ∪ h)
∩ (i ∪ j)) ∩ (((k
∪ m) ∩ (n ∪ u))
∩ ((w ∪ x) ∩ (y
∪ z)))) ≤ (h ∪ i) |
|
Theorem | gomaex3lem6 919 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& e
≤ f⊥ & f ≤ a⊥
& (((i
→2 g) ∩ (g →2 y)) ∩ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i)))) ≤ (g
→2 i) & p = ((a ∪
b) →1 (d ∪ e)⊥
)⊥
& q =
((e ∪ f) →1 (b ∪ c)⊥
)⊥
& r =
((p⊥ →1
q)⊥ ∩ (c ∪ d))
& g =
a
& h =
b
& i =
c
& j =
(c ∪ d)⊥ & k = r
& m =
(p⊥ →1
q)
& n =
(p⊥ →1
q)⊥ & u = (p⊥ ∩ q)
& w =
q⊥ & x = q
& y =
(e ∪ f)⊥ & z = f ⇒ (((a ∪ b)
∩ (c ∪ (c ∪ d)⊥ )) ∩ (((r ∪ (p⊥ →1 q)) ∩ ((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q))) ∩ ((q⊥ ∪ q) ∩ ((e
∪ f)⊥ ∪ f)))) ≤ (b
∪ c) |
|
Theorem | gomaex3lem7 920 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& e
≤ f⊥ & f ≤ a⊥
& (((i
→2 g) ∩ (g →2 y)) ∩ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i)))) ≤ (g
→2 i) & p = ((a ∪
b) →1 (d ∪ e)⊥
)⊥
& q =
((e ∪ f) →1 (b ∪ c)⊥
)⊥
& r =
((p⊥ →1
q)⊥ ∩ (c ∪ d))
& g =
a
& h =
b
& i =
c
& j =
(c ∪ d)⊥ & k = r
& m =
(p⊥ →1
q)
& n =
(p⊥ →1
q)⊥ & u = (p⊥ ∩ q)
& w =
q⊥ & x = q
& y =
(e ∪ f)⊥ & z = f ⇒ (((a ∪ b)
∩ d⊥ ) ∩
(((r ∪ (p⊥ →1 q)) ∩ p⊥ ) ∩ e⊥ )) ≤ (b ∪ c) |
|
Theorem | gomaex3lem8 921 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& e
≤ f⊥ & f ≤ a⊥
& (((i
→2 g) ∩ (g →2 y)) ∩ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i)))) ≤ (g
→2 i) & p = ((a ∪
b) →1 (d ∪ e)⊥
)⊥
& q =
((e ∪ f) →1 (b ∪ c)⊥
)⊥
& r =
((p⊥ →1
q)⊥ ∩ (c ∪ d))
& g =
a
& h =
b
& i =
c
& j =
(c ∪ d)⊥ & k = r
& m =
(p⊥ →1
q)
& n =
(p⊥ →1
q)⊥ & u = (p⊥ ∩ q)
& w =
q⊥ & x = q
& y =
(e ∪ f)⊥ & z = f ⇒ (((a ∪ b)
∩ (d ∪ e)⊥ ) ∩ ((r ∪ (p⊥ →1 q)) ∩ p⊥ )) ≤ (b ∪ c) |
|
Theorem | gomaex3lem9 922 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& e
≤ f⊥ & f ≤ a⊥
& (((i
→2 g) ∩ (g →2 y)) ∩ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i)))) ≤ (g
→2 i) & p = ((a ∪
b) →1 (d ∪ e)⊥
)⊥
& q =
((e ∪ f) →1 (b ∪ c)⊥
)⊥
& r =
((p⊥ →1
q)⊥ ∩ (c ∪ d))
& g =
a
& h =
b
& i =
c
& j =
(c ∪ d)⊥ & k = r
& m =
(p⊥ →1
q)
& n =
(p⊥ →1
q)⊥ & u = (p⊥ ∩ q)
& w =
q⊥ & x = q
& y =
(e ∪ f)⊥ & z = f ⇒ (((a ∪ b)
∩ (d ∪ e)⊥ ) ∩ (r ∪ (p⊥ →1 q))) ≤ (b
∪ c) |
|
Theorem | gomaex3lem10 923 |
Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM,
29-Nov-1999.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& e
≤ f⊥ & f ≤ a⊥
& (((i
→2 g) ∩ (g →2 y)) ∩ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i)))) ≤ (g
→2 i) & p = ((a ∪
b) →1 (d ∪ e)⊥
)⊥
& q =
((e ∪ f) →1 (b ∪ c)⊥
)⊥
& r =
((p⊥ →1
q)⊥ ∩ (c ∪ d))
& g =
a
& h =
b
& i =
c
& j =
(c ∪ d)⊥ & k = r
& m =
(p⊥ →1
q)
& n =
(p⊥ →1
q)⊥ & u = (p⊥ ∩ q)
& w =
q⊥ & x = q
& y =
(e ∪ f)⊥ & z = f ⇒ (((a ∪ b)
∩ (d ∪ e)⊥ ) ∩ (r ∪ (p⊥ →1 q))) ≤ ((b
∪ c) ∪ (e ∪ f)⊥ ) |
|
Theorem | gomaex3 924 |
Proof of Mayet Example 3 from 6-variable Godowski equation. R. Mayet,
"Equational bases for some varieties of orthomodular lattices
related to
states," Algebra Universalis 23 (1986), 167-195. (Contributed by
NM,
27-May-2000.)
|
a ≤ b⊥
& b
≤ c⊥ & c ≤ d⊥
& e
≤ f⊥ & f ≤ a⊥
& (((i
→2 g) ∩ (g →2 y)) ∩ (((y
→2 w) ∩ (w →2 n)) ∩ ((n
→2 k) ∩ (k →2 i)))) ≤ (g
→2 i) & p = ((a ∪
b) →1 (d ∪ e)⊥
)⊥
& q =
((e ∪ f) →1 (b ∪ c)⊥
)⊥
& r =
((p⊥ →1
q)⊥ ∩ (c ∪ d))
& g =
a
& i =
c
& k =
r
& n =
(p⊥ →1
q)⊥ & w = q⊥
& y =
(e ∪ f)⊥ ⇒ (((a ∪ b)
∩ (d ∪ e)⊥ ) ∩ ((((a ∪ b)
→1 (d ∪ e)⊥ ) →1
((e ∪ f) →1 (b ∪ c)⊥ )⊥
)⊥ →1 (c
∪ d))) ≤ ((b ∪ c)
∪ (e ∪ f)⊥ ) |
|
0.3.11 OML Lemmas for studying orthoarguesian
laws
|
|
Theorem | oas 925 |
"Strengthening" lemma for studying the orthoarguesian law.
(Contributed
by NM, 25-Dec-1998.)
|
(a⊥ ∩ (a ∪ b))
≤ c ⇒ ((a →1 c) ∩ (a
∪ b)) ≤ c |
|
Theorem | oasr 926 |
Reverse of oas 925 lemma for studying the orthoarguesian law.
(Contributed by NM, 28-Dec-1998.)
|
((a →1 c) ∩ (a
∪ b)) ≤ c ⇒ (a⊥ ∩ (a ∪ b))
≤ c |
|
Theorem | oat 927 |
Transformation lemma for studying the orthoarguesian law. (Contributed
by NM, 26-Dec-1998.)
|
(a⊥ ∩ (a ∪ b))
≤ c ⇒ b ≤ (a⊥ →1 c) |
|
Theorem | oatr 928 |
Reverse transformation lemma for studying the orthoarguesian law.
(Contributed by NM, 26-Dec-1998.)
|
b ≤ (a⊥ →1 c) ⇒ (a⊥ ∩ (a ∪ b))
≤ c |
|
Theorem | oau 929 |
Transformation lemma for studying the orthoarguesian law. (Contributed
by NM, 28-Dec-1998.)
|
(a ∩ ((a
→1 c) ∪ b)) ≤ c ⇒ b ≤ (a
→1 c) |
|
Theorem | oaur 930 |
Transformation lemma for studying the orthoarguesian law. (Contributed
by NM, 28-Dec-1998.)
|
b ≤ (a
→1 c) ⇒ (a ∩ ((a
→1 c) ∪ b)) ≤ c |
|
Theorem | oaidlem2 931 |
Lemma for identity-like OA law. (Contributed by NM, 22-Jan-1999.)
|
((d ∪ ((a
→1 c) ∩ (b →1 c)))⊥ ∪ ((a →1 c) →1 (b →1 c))) = 1 ⇒ ((a →1 c) ∩ (d
∪ ((a →1 c) ∩ (b
→1 c)))) ≤ (b →1 c) |
|
Theorem | oaidlem2g 932 |
Lemma for identity-like OA law (generalized). (Contributed by NM,
18-Feb-2002.)
|
((c ∪ (a
∩ b))⊥ ∪
(a →1 b)) = 1 ⇒ (a ∩ (c
∪ (a ∩ b))) ≤ b |
|
Theorem | oa6v4v 933 |
6-variable OA to 4-variable OA. (Contributed by NM, 29-Nov-1998.)
|
(((a ∪ b)
∩ (c ∪ d)) ∩ (e
∪ f)) ≤ (b ∪ (a
∩ (c ∪ (((a ∪ c)
∩ (b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))))) & e = 0
& f =
1 ⇒ ((a ∪ b)
∩ (c ∪ d)) ≤ (b
∪ (a ∩ (c ∪ ((a
∪ c) ∩ (b ∪ d))))) |
|
Theorem | oa4v3v 934 |
4-variable OA to 3-variable OA (Godowski/Greechie Eq. IV).
(Contributed by NM, 28-Nov-1998.)
|
d ≤ b⊥
& e
≤ c⊥ & ((d ∪ b)
∩ (e ∪ c)) ≤ (b
∪ (d ∩ (e ∪ ((d
∪ e) ∩ (b ∪ c)))))
& d =
(a →2 b)⊥ & e = (a
→2 c)⊥ ⇒ (b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) |
|
Theorem | oal42 935 |
Derivation of Godowski/Greechie Eq. II from Eq. IV. (Contributed by
NM, 25-Nov-1998.)
|
(b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) ⇒ (b⊥ ∩ ((a →2 b) ∪ ((a
→2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))))) ≤ a⊥ |
|
Theorem | oa23 936 |
Derivation of OA from Godowski/Greechie Eq. II. (Contributed by NM,
25-Nov-1998.)
|
(c⊥ ∩ ((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ≤ a⊥ ⇒ ((a →2 b) ∩ ((b
∪ c)⊥ ∪
((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |
|
Theorem | oa4lem1 937 |
Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.)
|
a ≤ b⊥
& c
≤ d⊥ ⇒ (a ∪ b) ≤
((a ∪ c)⊥ →2 b) |
|
Theorem | oa4lem2 938 |
Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.)
|
a ≤ b⊥
& c
≤ d⊥ ⇒ (c ∪ d) ≤
((a ∪ c)⊥ →2 d) |
|
Theorem | oa4lem3 939 |
Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.)
|
a ≤ b⊥
& c
≤ d⊥ ⇒ ((a ∪ b)
∩ (c ∪ d)) ≤ ((b
∪ d)⊥ ∪
(((a ∪ c)⊥ →2 b) ∩ ((a
∪ c)⊥ →2
d))) |
|
Theorem | distoah1 940 |
Satisfaction of distributive law hypothesis. (Contributed by NM,
29-Nov-1998.)
|
d = (a
→2 b) & e = ((b ∪
c) →1 ((a →2 b) ∩ (a
→2 c))) & f = ((b ∪
c) →2 ((a →2 b) ∩ (a
→2 c))) ⇒ d ≤ (a
→2 b) |
|
Theorem | distoah2 941 |
Satisfaction of distributive law hypothesis. (Contributed by NM,
29-Nov-1998.)
|
d = (a
→2 b) & e = ((b ∪
c) →1 ((a →2 b) ∩ (a
→2 c))) & f = ((b ∪
c) →2 ((a →2 b) ∩ (a
→2 c))) ⇒ e ≤ ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c))) |
|
Theorem | distoah3 942 |
Satisfaction of distributive law hypothesis. (Contributed by NM,
29-Nov-1998.)
|
d = (a
→2 b) & e = ((b ∪
c) →1 ((a →2 b) ∩ (a
→2 c))) & f = ((b ∪
c) →2 ((a →2 b) ∩ (a
→2 c))) ⇒ f ≤ ((b
∪ c) →0 ((a →2 b) ∩ (a
→2 c))) |
|
Theorem | distoah4 943 |
Satisfaction of distributive law hypothesis. (Contributed by NM,
29-Nov-1998.)
|
d = (a
→2 b) & e = ((b ∪
c) →1 ((a →2 b) ∩ (a
→2 c))) & f = ((b ∪
c) →2 ((a →2 b) ∩ (a
→2 c))) ⇒ (d ∩ (a
→2 c)) ≤ f |
|
Theorem | distoa 944 |
Derivation in OM of OA, assuming OA distributive law oadistd 1023.
(Contributed by NM, 29-Nov-1998.)
|
d = (a
→2 b) & e = ((b ∪
c) →1 ((a →2 b) ∩ (a
→2 c))) & f = ((b ∪
c) →2 ((a →2 b) ∩ (a
→2 c))) & (d ∩ (e
∪ f)) = ((d ∩ e)
∪ (d ∩ f)) ⇒ ((a →2 b) ∩ ((b
∪ c)⊥ ∪
((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |
|
Theorem | oa3to4lem1 945 |
Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable
proof). (Contributed by NM, 19-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& g =
((a ∩ b) ∪ (c
∩ d)) ⇒ b ≤ (a
→1 g) |
|
Theorem | oa3to4lem2 946 |
Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable
proof). (Contributed by NM, 19-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& g =
((a ∩ b) ∪ (c
∩ d)) ⇒ d ≤ (c
→1 g) |
|
Theorem | oa3to4lem3 947 |
Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable
proof). (Contributed by NM, 19-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& g =
((a ∩ b) ∪ (c
∩ d)) ⇒ (a ∩ (b
∪ (d ∩ ((a ∩ c)
∪ (b ∩ d))))) ≤ (a
∩ ((a →1 g) ∪ ((c
→1 g) ∩ ((a ∩ c)
∪ ((a →1 g) ∩ (c
→1 g)))))) |
|
Theorem | oa3to4lem4 948 |
Lemma for orthoarguesian law (Godowski/Greechie 3-variable to
4-variable proof). (Contributed by NM, 19-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& g =
((a ∩ b) ∪ (c
∩ d))
& (a
∩ ((a →1 g) ∪ ((c
→1 g) ∩ ((a ∩ c)
∪ ((a →1 g) ∩ (c
→1 g)))))) ≤ ((a ∩ g)
∪ (c ∩ g)) ⇒ (a ∩ (b
∪ (d ∩ ((a ∩ c)
∪ (b ∩ d))))) ≤ g |
|
Theorem | oa3to4lem5 949 |
Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable
proof). (Contributed by NM, 19-Dec-1998.)
|
((a ∪ b)
∩ (c ∪ d)) ≤ (a
∪ (b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))) ⇒ ((b ∪ a)
∩ (d ∪ c)) ≤ (a
∪ (b ∩ (d ∪ ((b
∪ d) ∩ (a ∪ c))))) |
|
Theorem | oa3to4lem6 950 |
Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable). The
first 2 hypotheses are those for 4-OA. The next 3 are variable
substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic
only. (Contributed by NM, 19-Dec-1998.)
|
a ≤ b⊥
& c
≤ d⊥ & g = ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) & e = a⊥
& f =
c⊥ & (e ∩ ((e
→1 g) ∪ ((f →1 g) ∩ ((e
∩ f) ∪ ((e →1 g) ∩ (f
→1 g)))))) ≤ ((e ∩ g)
∪ (f ∩ g)) ⇒ ((a ∪ b)
∩ (c ∪ d)) ≤ (a
∪ (b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))) |
|
Theorem | oa3to4 951 |
Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable). The
first 2 hypotheses are those for 4-OA. The next 3 are variable
substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic
only. (Contributed by NM, 19-Dec-1998.)
|
a ≤ b⊥
& c
≤ d⊥ & g = ((b⊥ ∩ a⊥ ) ∪ (d⊥ ∩ c⊥ )) & e = b⊥
& f =
d⊥ & (e ∩ ((e
→1 g) ∪ ((f →1 g) ∩ ((e
∩ f) ∪ ((e →1 g) ∩ (f
→1 g)))))) ≤ ((e ∩ g)
∪ (f ∩ g)) ⇒ ((a ∪ b)
∩ (c ∪ d)) ≤ (b
∪ (a ∩ (c ∪ ((a
∪ c) ∩ (b ∪ d))))) |
|
Theorem | oa6todual 952 |
Conventional to dual 6-variable OA law. (Contributed by NM,
22-Dec-1998.)
|
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))))))) ⇒ (b ∩ (a
∪ (c ∩ (((a ∩ c)
∪ (b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))))) ≤ (((a ∩ b)
∪ (c ∩ d)) ∪ (e
∩ f)) |
|
Theorem | oa6fromdual 953 |
Dual to conventional 6-variable OA law. (Contributed by NM,
22-Dec-1998.)
|
(b⊥ ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))))))) ≤ (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ ))
⇒ (((a ∪ b)
∩ (c ∪ d)) ∩ (e
∪ f)) ≤ (b ∪ (a
∩ (c ∪ (((a ∪ c)
∩ (b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))))) |
|
Theorem | oa6fromdualn 954 |
Dual to conventional 6-variable OA law. (Contributed by NM,
24-Dec-1998.)
|
(b ∩ (a
∪ (c ∩ (((a ∩ c)
∪ (b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))))) ≤ (((a ∩ b)
∪ (c ∩ d)) ∪ (e
∩ f)) ⇒ (((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))) |
|
Theorem | oa6to4h1 955 |
Satisfaction of 6-variable OA law hypothesis. (Contributed by NM,
22-Dec-1998.)
|
b⊥ = (a →1 g)⊥ & d⊥ = (c →1 g)⊥ & f⊥ = (e →1 g)⊥ ⇒ a⊥ ≤ b⊥
⊥ |
|
Theorem | oa6to4h2 956 |
Satisfaction of 6-variable OA law hypothesis. (Contributed by NM,
22-Dec-1998.)
|
b⊥ = (a →1 g)⊥ & d⊥ = (c →1 g)⊥ & f⊥ = (e →1 g)⊥ ⇒ c⊥ ≤ d⊥
⊥ |
|
Theorem | oa6to4h3 957 |
Satisfaction of 6-variable OA law hypothesis. (Contributed by NM,
22-Dec-1998.)
|
b⊥ = (a →1 g)⊥ & d⊥ = (c →1 g)⊥ & f⊥ = (e →1 g)⊥ ⇒ e⊥ ≤ f⊥
⊥ |
|
Theorem | oa6to4 958 |
Derivation of 4-variable proper OA law, assuming 6-variable OA law.
(Contributed by NM, 22-Dec-1998.)
|
b⊥ = (a →1 g)⊥ & d⊥ = (c →1 g)⊥ & f⊥ = (e →1 g)⊥ & (((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))))))) ⇒ ((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c)
∪ ((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e)
∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) ≤
(((a ∩ g) ∪ (c
∩ g)) ∪ (e ∩ g)) |
|
Theorem | oa4b 959 |
Derivation of 4-OA law variant. (Contributed by NM, 22-Dec-1998.)
|
((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c)
∪ ((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e)
∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) ≤
(((a ∩ g) ∪ (c
∩ g)) ∪ (e ∩ g)) ⇒ ((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c)
∪ ((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e)
∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) ≤ g |
|
Theorem | oa4to6lem1 960 |
Lemma for orthoarguesian law (4-variable to 6-variable proof).
(Contributed by NM, 18-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& e⊥ ≤ f
& g =
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) ⇒ b ≤ (a
→1 g) |
|
Theorem | oa4to6lem2 961 |
Lemma for orthoarguesian law (4-variable to 6-variable proof).
(Contributed by NM, 18-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& e⊥ ≤ f
& g =
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) ⇒ d ≤ (c
→1 g) |
|
Theorem | oa4to6lem3 962 |
Lemma for orthoarguesian law (4-variable to 6-variable proof).
(Contributed by NM, 18-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& e⊥ ≤ f
& g =
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) ⇒ f ≤ (e
→1 g) |
|
Theorem | oa4to6lem4 963 |
Lemma for orthoarguesian law (4-variable to 6-variable proof).
(Contributed by NM, 18-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& e⊥ ≤ f
& g =
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) ⇒ (b ∩ (a
∪ (c ∩ (((a ∩ c)
∪ (b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))))) ≤ ((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c)
∪ ((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e)
∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) |
|
Theorem | oa4to6dual 964 |
Lemma for orthoarguesian law (4-variable to 6-variable proof).
(Contributed by NM, 19-Dec-1998.)
|
a⊥ ≤ b
& c⊥ ≤ d
& e⊥ ≤ f
& g =
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f))
& ((a
→1 g) ∩ (a ∪ (c
∩ (((a ∩ c) ∪ ((a
→1 g) ∩ (c →1 g))) ∪ (((a
∩ e) ∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) ≤ g ⇒ (b ∩ (a
∪ (c ∩ (((a ∩ c)
∪ (b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))))) ≤ g |
|
Theorem | oa4to6 965 |
Orthoarguesian law (4-variable to 6-variable proof). The first 3
hypotheses are those for 6-OA. The next 4 are variable substitutions
into 4-OA. The last is the 4-OA. The proof uses OM logic only.
(Contributed by NM, 19-Dec-1998.)
|
a ≤ b⊥
& c
≤ d⊥ & e ≤ f⊥
& g =
(((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) & h = a⊥
& j =
c⊥ & k = e⊥
& ((h
→1 g) ∩ (h ∪ (j
∩ (((h ∩ j) ∪ ((h
→1 g) ∩ (j →1 g))) ∪ (((h
∩ k) ∪ ((h →1 g) ∩ (k
→1 g))) ∩ ((j ∩ k)
∪ ((j →1 g) ∩ (k
→1 g)))))))) ≤ g ⇒ (((a ∪ b)
∩ (c ∪ d)) ∩ (e
∪ f)) ≤ (b ∪ (a
∩ (c ∪ (((a ∪ c)
∩ (b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))))) |
|
Theorem | oa4btoc 966 |
Derivation of 4-OA law variant. (Contributed by NM, 22-Dec-1998.)
|
((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c)
∪ ((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e)
∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) ≤ g ⇒ (a⊥ ∩ (a ∪ (c
∩ (((a ∩ c) ∪ ((a
→1 g) ∩ (c →1 g))) ∪ (((a
∩ e) ∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) ≤ g |
|
Theorem | oa4ctob 967 |
Derivation of 4-OA law variant. (Contributed by NM, 22-Dec-1998.)
|
(a⊥ ∩ (a ∪ (c
∩ (((a ∩ c) ∪ ((a
→1 g) ∩ (c →1 g))) ∪ (((a
∩ e) ∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) ≤ g ⇒ ((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c)
∪ ((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e)
∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e)
∪ ((c →1 g) ∩ (e
→1 g)))))))) ≤ g |
|
Theorem | oa4ctod 968 |
Derivation of 4-OA law variant. (Contributed by NM, 24-Dec-1998.)
|
(a⊥ ∩ (a ∪ (b
∩ (((a ∩ b) ∪ ((a
→1 d) ∩ (b →1 d))) ∪ (((a
∩ c) ∪ ((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d)))))))) ≤ d ⇒ (b ∩ (((a
∩ b) ∪ ((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ c)
∪ ((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d)))))) ≤ (a⊥ →1 d) |
|
Theorem | oa4dtoc 969 |
Derivation of 4-OA law variant. (Contributed by NM, 24-Dec-1998.)
|
(b ∩ (((a
∩ b) ∪ ((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ c)
∪ ((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d)))))) ≤ (a⊥ →1 d) ⇒ (a⊥ ∩ (a ∪ (b
∩ (((a ∩ b) ∪ ((a
→1 d) ∩ (b →1 d))) ∪ (((a
∩ c) ∪ ((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d)))))))) ≤ d |
|
Theorem | oa4dcom 970 |
Lemma commuting terms. (Contributed by NM, 24-Dec-1998.)
|
(b ∩ (((a
∩ b) ∪ ((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ c)
∪ ((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d)))))) = (b ∩ (((b
∩ a) ∪ ((b →1 d) ∩ (a
→1 d))) ∪ (((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d))) ∩ ((a ∩ c)
∪ ((a →1 d) ∩ (c
→1 d)))))) |
|
0.3.12 5OA law
|
|
Theorem | oa8todual 971 |
Conventional to dual 8-variable OA law. (Contributed by NM,
8-May-2000.)
|
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥ ))) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))))))) ⇒ (b ∩ (a
∪ (c ∩ ((((a ∩ c)
∪ (b ∩ d)) ∪ (((a
∩ g) ∪ (b ∩ h))
∩ ((c ∩ g) ∪ (d
∩ h)))) ∪ ((((a ∩ e)
∪ (b ∩ f)) ∪ (((a
∩ g) ∪ (b ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h)))) ∩ (((c ∩ e)
∪ (d ∩ f)) ∪ (((c
∩ g) ∪ (d ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h))))))))) ≤ (((a ∩ b)
∪ (c ∩ d)) ∪ ((e
∩ f) ∪ (g ∩ h))) |
|
Theorem | oa8to5 972 |
Orthoarguesian law 5OA converted from 8 to 5 variables. (Contributed
by NM, 8-May-2000.)
|
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥ ))) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))))))) & b⊥ = (a →1 j)⊥ & d⊥ = (c →1 j)⊥ & f⊥ = (e →1 j)⊥ & h⊥ = (g →1 j)⊥ ⇒ ((a →1 j) ∩ (a
∪ (c ∩ ((((a ∩ c)
∪ ((a →1 j) ∩ (c
→1 j))) ∪ (((a ∩ g)
∪ ((a →1 j) ∩ (g
→1 j))) ∩ ((c ∩ g)
∪ ((c →1 j) ∩ (g
→1 j))))) ∪
((((a ∩ e) ∪ ((a
→1 j) ∩ (e →1 j))) ∪ (((a
∩ g) ∪ ((a →1 j) ∩ (g
→1 j))) ∩ ((e ∩ g)
∪ ((e →1 j) ∩ (g
→1 j))))) ∩
(((c ∩ e) ∪ ((c
→1 j) ∩ (e →1 j))) ∪ (((c
∩ g) ∪ ((c →1 j) ∩ (g
→1 j))) ∩ ((e ∩ g)
∪ ((e →1 j) ∩ (g
→1 j)))))))))) ≤
(((a ∩ j) ∪ (c
∩ j)) ∪ ((e ∩ j)
∪ (g ∩ j))) |
|
0.3.13 "Godowski/Greechie" form of proper
4-OA
|
|
Theorem | oa4to4u 973 |
A "universal" 4-OA. The hypotheses are the standard proper 4-OA and
substitutions into it. (Contributed by NM, 28-Dec-1998.)
|
((e →1 d) ∩ (e
∪ (f ∩ (((e ∩ f)
∪ ((e →1 d) ∩ (f
→1 d))) ∪ (((e ∩ g)
∪ ((e →1 d) ∩ (g
→1 d))) ∩ ((f ∩ g)
∪ ((f →1 d) ∩ (g
→1 d)))))))) ≤
(((e ∩ d) ∪ (f
∩ d)) ∪ (g ∩ d))
& e =
(a⊥ →1
d)
& f =
(b⊥ →1
d)
& g =
(c⊥ →1
d) ⇒ ((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a
→1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a →1 d) ∩ (c
→1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b
→1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ ((((a →1 d) ∩ (a⊥ →1 d)) ∪ ((b
→1 d) ∩ (b⊥ →1 d))) ∪ ((c
→1 d) ∩ (c⊥ →1 d))) |
|
Theorem | oa4to4u2 974 |
A weaker-looking "universal" proper 4-OA. (Contributed by NM,
29-Dec-1998.)
|
((e →1 d) ∩ (e
∪ (f ∩ (((e ∩ f)
∪ ((e →1 d) ∩ (f
→1 d))) ∪ (((e ∩ g)
∪ ((e →1 d) ∩ (g
→1 d))) ∩ ((f ∩ g)
∪ ((f →1 d) ∩ (g
→1 d)))))))) ≤
(((e ∩ d) ∪ (f
∩ d)) ∪ (g ∩ d))
& e =
(a⊥ →1
d)
& f =
(b⊥ →1
d)
& g =
(c⊥ →1
d) ⇒ ((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a
→1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a →1 d) ∩ (c
→1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b
→1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ d |
|
Theorem | oa4uto4g 975 |
Derivation of "Godowski/Greechie" 4-variable proper OA law variant
from
"universal" variant oa4to4u2 974. (Contributed by NM, 28-Dec-1998.)
|
((b⊥ →1 d) ∩ ((b⊥ ⊥ →1
d) ∪ ((a⊥ ⊥ →1
d) ∩ ((((b⊥ →1 d) ∩ (a⊥ →1 d)) ∪ ((b⊥ ⊥ →1
d) ∩ (a⊥ ⊥ →1
d))) ∪ ((((b⊥ →1 d) ∩ (c⊥ →1 d)) ∪ ((b⊥ ⊥ →1
d) ∩ (c⊥ ⊥ →1
d))) ∩ (((a⊥ →1 d) ∩ (c⊥ →1 d)) ∪ ((a⊥ ⊥ →1
d) ∩ (c⊥ ⊥ →1
d)))))))) ≤ d
& h =
(((a ∩ c) ∪ ((a
→1 d) ∩ (c →1 d))) ∩ ((b
∩ c) ∪ ((b →1 d) ∩ (c
→1 d)))) ⇒ ((a →1 d) ∩ (((a
∩ b) ∪ ((a →1 d) ∩ (b
→1 d))) ∪ h)) ≤ (b
→1 d) |
|
Theorem | oa4gto4u 976 |
A "universal" 4-OA derived from the Godowski/Greechie form. The
hypotheses are the Godowski/Greechie form of the proper 4-OA and
substitutions into it. (Contributed by NM, 30-Dec-1998.)
|
((e →1 d) ∩ (((e
∩ f) ∪ ((e →1 d) ∩ (f
→1 d))) ∪ (((e ∩ g)
∪ ((e →1 d) ∩ (g
→1 d))) ∩ ((f ∩ g)
∪ ((f →1 d) ∩ (g
→1 d)))))) ≤ (f →1 d)
& f =
(a →1 d)
& e =
(b →1 d)
& g =
(c →1 d) ⇒ ((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a
→1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a →1 d) ∩ (c
→1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b
→1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ d |
|
Theorem | oa4uto4 977 |
Derivation of standard 4-variable proper OA law from "universal"
variant
oa4to4u2 974. (Contributed by NM, 30-Dec-1998.)
|
((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a
→1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a →1 d) ∩ (c
→1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b
→1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ d ⇒ ((a →1 d) ∩ (a
∪ (b ∩ (((a ∩ b)
∪ ((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ c)
∪ ((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d)))))))) ≤ d |
|
0.3.14 Some 3-OA inferences (derived under
OM)
|
|
Theorem | oa3-2lema 978 |
Lemma for 3-OA(2). Equivalence with substitution into 4-OA. (Contributed
by NM, 24-Dec-1998.)
|
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 0) ∪ ((a →1 c) ∩ (0 →1 c))) ∩ ((b
∩ 0) ∪ ((b →1
c) ∩ (0 →1
c)))))))) = ((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c)))))) |
|
Theorem | oa3-2lemb 979 |
Lemma for 3-OA(2). Equivalence with substitution into 4-OA. (Contributed
by NM, 24-Dec-1998.)
|
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ c)
∪ ((a →1 c) ∩ (c
→1 c))) ∩ ((b ∩ c)
∪ ((b →1 c) ∩ (c
→1 c)))))))) = ((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c)))))) |
|
Theorem | oa3-6lem 980 |
Lemma for 3-OA(6). Equivalence with substitution into 4-OA. (Contributed
by NM, 24-Dec-1998.)
|
((a →1 c) ∩ (a
∪ (b ∩ (((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c))) ∪ (((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) ∩ ((b
∩ 1) ∪ ((b →1
c) ∩ (1 →1
c)))))))) = ((a →1 c) ∩ (a
∪ (b ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))) |
|
Theorem | oa3-3lem 981 |
Lemma for 3-OA(3). Equivalence with substitution into 6-OA dual.
(Contributed by NM, 24-Dec-1998.)
|
(a⊥ ∩ (a ∪ (b
∩ (((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b
∩ 1) ∪ (b⊥ ∩
c))))))) = (a⊥ ∩ (a ∪ (b
∩ ((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) |
|
Theorem | oa3-1lem 982 |
Lemma for 3-OA(1). Equivalence with substitution into 6-OA dual.
(Contributed by NM, 25-Dec-1998.)
|
(1 ∩ (0 ∪ (a ∩ (((0 ∩ a) ∪ (1 ∩ (a →1 c))) ∪ (((0 ∩ b) ∪ (1 ∩ (b →1 c))) ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c)))))))) = (a ∩ ((a
→1 c) ∪ ((b →1 c) ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c)))))) |
|
Theorem | oa3-4lem 983 |
Lemma for 3-OA(4). Equivalence with substitution into 6-OA dual.
(Contributed by NM, 25-Dec-1998.)
|
(a⊥ ∩ (a ∪ (b
∩ (((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ c)
∪ (a⊥ ∩ 1)) ∩
((b ∩ c) ∪ (b⊥ ∩ 1))))))) = (a⊥ ∩ (a ∪ (b
∩ ((a ≡ b) ∪ ((a
→1 c) ∩ (b →1 c)))))) |
|
Theorem | oa3-5lem 984 |
Lemma for 3-OA(5). Equivalence with substitution into 6-OA dual.
(Contributed by NM, 25-Dec-1998.)
|
((a →1 c) ∩ (a
∪ (c ∩ (((a ∩ c)
∪ ((a →1 c) ∩ 1)) ∪ (((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c))) ∩ ((c ∩ b)
∪ (1 ∩ (b →1
c)))))))) = ((a →1 c) ∩ (a
∪ (c ∩ ((a →1 c) ∪ ((b
→1 c) ∩ ((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c)))))))) |
|
Theorem | oa3-u1lem 985 |
Lemma for a "universal" 3-OA. Equivalence with substitution into 6-OA
dual. (Contributed by NM, 26-Dec-1998.)
|
(1 ∩ (c ∪ ((a⊥ →1 c) ∩ (((c
∩ (a⊥ →1
c)) ∪ (1 ∩ (a →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))))) = (c
∪ ((a⊥ →1
c) ∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) |
|
Theorem | oa3-u2lem 986 |
Lemma for a "universal" 3-OA. Equivalence with substitution into 6-OA
dual. (Contributed by NM, 27-Dec-1998.)
|
((a →1 c) ∩ ((a⊥ →1 c) ∪ (c
∩ ((((a⊥ →1
c) ∩ c) ∪ ((a
→1 c) ∩ 1)) ∪
((((a⊥ →1
c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c))) ∩ ((c
∩ (b⊥ →1
c)) ∪ (1 ∩ (b →1 c)))))))) = ((a
→1 c) ∩ ((a⊥ →1 c) ∪ (c
∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))))) |
|
Theorem | oa3-6to3 987 |
Derivation of 3-OA variant (3) from (6). (Contributed by NM,
24-Dec-1998.)
|
((a →1 c) ∩ (a
∪ (b ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a
→1 c) ∩ (b →1 c)))))) ≤ c ⇒ (a⊥ ∩ (a ∪ (b
∩ ((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) ≤ c |
|
Theorem | oa3-2to4 988 |
Derivation of 3-OA variant (4) from (2). (Contributed by NM,
24-Dec-1998.)
|
((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c)))))) ≤ c ⇒ (a⊥ ∩ (a ∪ (b
∩ ((a ≡ b) ∪ ((a
→1 c) ∩ (b →1 c)))))) ≤ c |
|
Theorem | oa3-2wto2 989 |
Derivation of 3-OA variant from weaker version. (Contributed by NM,
25-Dec-1998.)
|
(a⊥ ∩ (a ∪ (b
∩ ((a ∩ b) ∪ ((a
→1 c) ∩ (b →1 c)))))) ≤ c ⇒ ((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c)))))) ≤ c |
|
Theorem | oa3-2to2s 990 |
Derivation of 3-OA variant from weaker version. (Contributed by NM,
25-Dec-1998.)
|
((a →1 d) ∩ (a
∪ (b ∩ ((a ∩ b)
∪ ((a →1 d) ∩ (b
→1 d)))))) ≤ d
& d =
((a ∩ c) ∪ (b
∩ c)) ⇒ ((a →1 c) ∩ (a
∪ (b ∩ ((a ∩ b)
∪ ((a →1 c) ∩ (b
→1 c)))))) ≤ ((a ∩ c)
∪ (b ∩ c)) |
|
Theorem | oa3-u1 991 |
Derivation of a "universal" 3-OA. The hypothesis is a substitution
instance of the proper 4-OA. (Contributed by NM, 27-Dec-1998.)
|
((c →1 c) ∩ (c
∪ ((a⊥ →1
c) ∩ (((c ∩ (a⊥ →1 c)) ∪ ((c
→1 c) ∩ ((a⊥ →1 c) →1 c))) ∪ (((c
∩ (b⊥ →1
c)) ∪ ((c →1 c) ∩ ((b⊥ →1 c) →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ (((a⊥ →1 c) →1 c) ∩ ((b⊥ →1 c) →1 c)))))))) ≤ c ⇒ (c ∪ ((a⊥ →1 c) ∩ ((a
→1 c) ∪ ((b →1 c) ∩ (((a
→1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) ≤ c |
|
Theorem | oa3-u2 992 |
Derivation of a "universal" 3-OA. The hypothesis is a substitution
instance of the proper 4-OA. (Contributed by NM, 27-Dec-1998.)
|
(((a⊥ →1 c) →1 c) ∩ ((a⊥ →1 c) ∪ (c
∩ ((((a⊥ →1
c) ∩ c) ∪ (((a⊥ →1 c) →1 c) ∩ (c
→1 c))) ∪ ((((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ (((a⊥ →1 c) →1 c) ∩ ((b⊥ →1 c) →1 c))) ∩ ((c
∩ (b⊥ →1
c)) ∪ ((c →1 c) ∩ ((b⊥ →1 c) →1 c)))))))) ≤ c ⇒ ((a →1 c) ∩ ((a⊥ →1 c) ∪ (c
∩ ((a →1 c) ∪ ((b
→1 c) ∩ (((a →1 c) ∩ (b
→1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))))) ≤ c |
|
Theorem | oa3-1to5 993 |
Derivation of an equivalent of the second "universal" 3-OA U2 from an
equivalent of the first "universal" 3-OA U1. This shows that
U2 is
redundant in a system containg U1. The hypothesis is theorem oal1 1000.
(Contributed by NM, 1-Jan-1999.)
|
((a →1 c) ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c)))) ≤ (b →1 c) ⇒ (c ∩ ((b
→1 c) ∪ ((a →1 c) ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c)))))) ≤ (b⊥ →1 c) |
|
0.4 Derivation of 4-variable proper OA from OA
distributive law
|
|
Axiom | ax-oadist 994 |
OA Distributive law. In this section, we postulate this temporary axiom
(intended not to be used outside of this section) for the OA
distributive law, and derive from it the 6-OA, in theorem d6oa 997.
This
together with the derivation of the distributive law in theorem
4oadist 1044 shows that the OA distributive law is
equivalent to the 6-OA.
(Contributed by NM, 30-Dec-1998.)
|
e = (((a ∩
c) ∪ ((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d)))) & f = (((a ∩
b) ∪ ((a →1 d) ∩ (b
→1 d))) ∪ e)
& h
≤ (a →1 d)
& j
≤ f
& k
≤ f
& (h
∩ (b →1 d)) ≤ k ⇒ (h ∩ (j
∪ k)) = ((h ∩ j)
∪ (h ∩ k)) |
|
Theorem | d3oa 995 |
Derivation of 3-OA from OA distributive law. (Contributed by NM,
30-Dec-1998.)
|
f = ((a ∩
b) ∪ ((a →1 c) ∩ (b
→1 c))) ⇒ ((a →1 c) ∩ f)
≤ (b →1 c) |
|
Theorem | d4oa 996 |
Variant of proper 4-OA proved from OA distributive law. (Contributed by
NM, 30-Dec-1998.)
|
e = ((a ∩
b) ∪ ((a →1 d) ∩ (b
→1 d))) & f = (((a ∩
c) ∪ ((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c)
∪ ((b →1 d) ∩ (c
→1 d)))) ⇒ ((a →1 d) ∩ (e
∪ f)) ≤ (b →1 d) |
|
Theorem | d6oa 997 |
Derivation of 6-variable orthoarguesian law from OA distributive law.
(Contributed by NM, 30-Dec-1998.)
|
a ≤ b⊥
& c
≤ d⊥ & e ≤ f⊥ ⇒ (((a ∪ b)
∩ (c ∪ d)) ∩ (e
∪ f)) ≤ (b ∪ (a
∩ (c ∪ (((a ∪ c)
∩ (b ∪ d)) ∩ (((a
∪ e) ∩ (b ∪ f))
∪ ((c ∪ e) ∩ (d
∪ f))))))) |
|
0.5 Orthoarguesian laws
|
|
0.5.1 3-variable orthoarguesian law
|
|
Axiom | ax-3oa 998 |
3-variable consequence of the orthoarguesion law. (Contributed by NM,
20-Jul-1999.)
|
((a →1 c) ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c)))) ≤ (b →1 c) |
|
Theorem | oal2 999 |
Orthoarguesian law - →2 version. (Contributed
by NM,
20-Jul-1999.)
|
((a →2 b) ∩ ((b
∪ c)⊥ ∪
((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |
|
Theorem | oal1 1000 |
Orthoarguesian law - →1 version derived from
→1 version.
(Contributed by NM, 25-Nov-1998.)
|
((a →1 c) ∩ ((a
∩ b) ∪ ((a →1 c) ∩ (b
→1 c)))) ≤ (b →1 c) |