Home | Quantum
Logic Explorer Theorem List (p. 10 of 13) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > QLE Home Page > Theorem List Contents This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | go2n6 901 | 12-variable Godowski equation derived from 6-variable one. The last hypothesis is the 6-variable Godowski equation. (Contributed by NM, 29-Nov-1999.) |
g ≤ h⊥ & h ≤ i⊥ & i ≤ j⊥ & j ≤ k⊥ & k ≤ m⊥ & m ≤ n⊥ & n ≤ u⊥ & u ≤ w⊥ & w ≤ x⊥ & x ≤ y⊥ & y ≤ z⊥ & z ≤ g⊥ & (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) ⇒ (((g ∪ h) ∩ (i ∪ j)) ∩ (((k ∪ m) ∩ (n ∪ u)) ∩ ((w ∪ x) ∩ (y ∪ z)))) ≤ (h ∪ i) | ||
Theorem | gomaex3h1 902 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
a ≤ b⊥ & g = a & h = b ⇒ g ≤ h⊥ | ||
Theorem | gomaex3h2 903 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
b ≤ c⊥ & h = b & i = c ⇒ h ≤ i⊥ | ||
Theorem | gomaex3h3 904 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
i = c & j = (c ∪ d)⊥ ⇒ i ≤ j⊥ | ||
Theorem | gomaex3h4 905 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & j = (c ∪ d)⊥ & k = r ⇒ j ≤ k⊥ | ||
Theorem | gomaex3h5 906 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & k = r & m = (p⊥ →1 q) ⇒ k ≤ m⊥ | ||
Theorem | gomaex3h6 907 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
m = (p⊥ →1 q) & n = (p⊥ →1 q)⊥ ⇒ m ≤ n⊥ | ||
Theorem | gomaex3h7 908 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
n = (p⊥ →1 q)⊥ & u = (p⊥ ∩ q) ⇒ n ≤ u⊥ | ||
Theorem | gomaex3h8 909 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
u = (p⊥ ∩ q) & w = q⊥ ⇒ u ≤ w⊥ | ||
Theorem | gomaex3h9 910 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
w = q⊥ & x = q ⇒ w ≤ x⊥ | ||
Theorem | gomaex3h10 911 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ & x = q & y = (e ∪ f)⊥ ⇒ x ≤ y⊥ | ||
Theorem | gomaex3h11 912 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
y = (e ∪ f)⊥ & z = f ⇒ y ≤ z⊥ | ||
Theorem | gomaex3h12 913 | Hypothesis for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
f ≤ a⊥ & g = a & z = f ⇒ z ≤ g⊥ | ||
Theorem | gomaex3lem1 914 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
c ≤ d⊥ ⇒ (c ∪ (c ∪ d)⊥ ) = d⊥ | ||
Theorem | gomaex3lem2 915 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
e ≤ f⊥ ⇒ ((e ∪ f)⊥ ∪ f) = e⊥ | ||
Theorem | gomaex3lem3 916 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q)) = p⊥ | ||
Theorem | gomaex3lem4 917 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ ⇒ ((a ∪ b) ∩ (d ∪ e)⊥ ) ≤ p⊥ | ||
Theorem | gomaex3lem5 918 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
a ≤ b⊥ & b ≤ c⊥ & c ≤ d⊥ & e ≤ f⊥ & f ≤ a⊥ & (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) & p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ & q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ & r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & g = a & h = b & i = c & j = (c ∪ d)⊥ & k = r & m = (p⊥ →1 q) & n = (p⊥ →1 q)⊥ & u = (p⊥ ∩ q) & w = q⊥ & x = q & y = (e ∪ f)⊥ & z = f ⇒ (((g ∪ h) ∩ (i ∪ j)) ∩ (((k ∪ m) ∩ (n ∪ u)) ∩ ((w ∪ x) ∩ (y ∪ z)))) ≤ (h ∪ i) | ||
Theorem | gomaex3lem6 919 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
a ≤ b⊥ & b ≤ c⊥ & c ≤ d⊥ & e ≤ f⊥ & f ≤ a⊥ & (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) & p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ & q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ & r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & g = a & h = b & i = c & j = (c ∪ d)⊥ & k = r & m = (p⊥ →1 q) & n = (p⊥ →1 q)⊥ & u = (p⊥ ∩ q) & w = q⊥ & x = q & y = (e ∪ f)⊥ & z = f ⇒ (((a ∪ b) ∩ (c ∪ (c ∪ d)⊥ )) ∩ (((r ∪ (p⊥ →1 q)) ∩ ((p⊥ →1 q)⊥ ∪ (p⊥ ∩ q))) ∩ ((q⊥ ∪ q) ∩ ((e ∪ f)⊥ ∪ f)))) ≤ (b ∪ c) | ||
Theorem | gomaex3lem7 920 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
a ≤ b⊥ & b ≤ c⊥ & c ≤ d⊥ & e ≤ f⊥ & f ≤ a⊥ & (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) & p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ & q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ & r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & g = a & h = b & i = c & j = (c ∪ d)⊥ & k = r & m = (p⊥ →1 q) & n = (p⊥ →1 q)⊥ & u = (p⊥ ∩ q) & w = q⊥ & x = q & y = (e ∪ f)⊥ & z = f ⇒ (((a ∪ b) ∩ d⊥ ) ∩ (((r ∪ (p⊥ →1 q)) ∩ p⊥ ) ∩ e⊥ )) ≤ (b ∪ c) | ||
Theorem | gomaex3lem8 921 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
a ≤ b⊥ & b ≤ c⊥ & c ≤ d⊥ & e ≤ f⊥ & f ≤ a⊥ & (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) & p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ & q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ & r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & g = a & h = b & i = c & j = (c ∪ d)⊥ & k = r & m = (p⊥ →1 q) & n = (p⊥ →1 q)⊥ & u = (p⊥ ∩ q) & w = q⊥ & x = q & y = (e ∪ f)⊥ & z = f ⇒ (((a ∪ b) ∩ (d ∪ e)⊥ ) ∩ ((r ∪ (p⊥ →1 q)) ∩ p⊥ )) ≤ (b ∪ c) | ||
Theorem | gomaex3lem9 922 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
a ≤ b⊥ & b ≤ c⊥ & c ≤ d⊥ & e ≤ f⊥ & f ≤ a⊥ & (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) & p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ & q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ & r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & g = a & h = b & i = c & j = (c ∪ d)⊥ & k = r & m = (p⊥ →1 q) & n = (p⊥ →1 q)⊥ & u = (p⊥ ∩ q) & w = q⊥ & x = q & y = (e ∪ f)⊥ & z = f ⇒ (((a ∪ b) ∩ (d ∪ e)⊥ ) ∩ (r ∪ (p⊥ →1 q))) ≤ (b ∪ c) | ||
Theorem | gomaex3lem10 923 | Lemma for Godowski 6-var -> Mayet Example 3. (Contributed by NM, 29-Nov-1999.) |
a ≤ b⊥ & b ≤ c⊥ & c ≤ d⊥ & e ≤ f⊥ & f ≤ a⊥ & (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) & p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ & q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ & r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & g = a & h = b & i = c & j = (c ∪ d)⊥ & k = r & m = (p⊥ →1 q) & n = (p⊥ →1 q)⊥ & u = (p⊥ ∩ q) & w = q⊥ & x = q & y = (e ∪ f)⊥ & z = f ⇒ (((a ∪ b) ∩ (d ∪ e)⊥ ) ∩ (r ∪ (p⊥ →1 q))) ≤ ((b ∪ c) ∪ (e ∪ f)⊥ ) | ||
Theorem | gomaex3 924 | Proof of Mayet Example 3 from 6-variable Godowski equation. R. Mayet, "Equational bases for some varieties of orthomodular lattices related to states", Algebra Universalis 23 (1986), 167-195. (Contributed by NM, 27-May-2000.) |
a ≤ b⊥ & b ≤ c⊥ & c ≤ d⊥ & e ≤ f⊥ & f ≤ a⊥ & (((i →2 g) ∩ (g →2 y)) ∩ (((y →2 w) ∩ (w →2 n)) ∩ ((n →2 k) ∩ (k →2 i)))) ≤ (g →2 i) & p = ((a ∪ b) →1 (d ∪ e)⊥ )⊥ & q = ((e ∪ f) →1 (b ∪ c)⊥ )⊥ & r = ((p⊥ →1 q)⊥ ∩ (c ∪ d)) & g = a & i = c & k = r & n = (p⊥ →1 q)⊥ & w = q⊥ & y = (e ∪ f)⊥ ⇒ (((a ∪ b) ∩ (d ∪ e)⊥ ) ∩ ((((a ∪ b) →1 (d ∪ e)⊥ ) →1 ((e ∪ f) →1 (b ∪ c)⊥ )⊥ )⊥ →1 (c ∪ d))) ≤ ((b ∪ c) ∪ (e ∪ f)⊥ ) | ||
Theorem | oas 925 | "Strengthening" lemma for studying the orthoarguesian law. (Contributed by NM, 25-Dec-1998.) |
(a⊥ ∩ (a ∪ b)) ≤ c ⇒ ((a →1 c) ∩ (a ∪ b)) ≤ c | ||
Theorem | oasr 926 | Reverse of oas 925 lemma for studying the orthoarguesian law. (Contributed by NM, 28-Dec-1998.) |
((a →1 c) ∩ (a ∪ b)) ≤ c ⇒ (a⊥ ∩ (a ∪ b)) ≤ c | ||
Theorem | oat 927 | Transformation lemma for studying the orthoarguesian law. (Contributed by NM, 26-Dec-1998.) |
(a⊥ ∩ (a ∪ b)) ≤ c ⇒ b ≤ (a⊥ →1 c) | ||
Theorem | oatr 928 | Reverse transformation lemma for studying the orthoarguesian law. (Contributed by NM, 26-Dec-1998.) |
b ≤ (a⊥ →1 c) ⇒ (a⊥ ∩ (a ∪ b)) ≤ c | ||
Theorem | oau 929 | Transformation lemma for studying the orthoarguesian law. (Contributed by NM, 28-Dec-1998.) |
(a ∩ ((a →1 c) ∪ b)) ≤ c ⇒ b ≤ (a →1 c) | ||
Theorem | oaur 930 | Transformation lemma for studying the orthoarguesian law. (Contributed by NM, 28-Dec-1998.) |
b ≤ (a →1 c) ⇒ (a ∩ ((a →1 c) ∪ b)) ≤ c | ||
Theorem | oaidlem2 931 | Lemma for identity-like OA law. (Contributed by NM, 22-Jan-1999.) |
((d ∪ ((a →1 c) ∩ (b →1 c)))⊥ ∪ ((a →1 c) →1 (b →1 c))) = 1 ⇒ ((a →1 c) ∩ (d ∪ ((a →1 c) ∩ (b →1 c)))) ≤ (b →1 c) | ||
Theorem | oaidlem2g 932 | Lemma for identity-like OA law (generalized). (Contributed by NM, 18-Feb-2002.) |
((c ∪ (a ∩ b))⊥ ∪ (a →1 b)) = 1 ⇒ (a ∩ (c ∪ (a ∩ b))) ≤ b | ||
Theorem | oa6v4v 933 | 6-variable OA to 4-variable OA. (Contributed by NM, 29-Nov-1998.) |
(((a ∪ b) ∩ (c ∪ d)) ∩ (e ∪ f)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ e) ∩ (b ∪ f)) ∪ ((c ∪ e) ∩ (d ∪ f))))))) & e = 0 & f = 1 ⇒ ((a ∪ b) ∩ (c ∪ d)) ≤ (b ∪ (a ∩ (c ∪ ((a ∪ c) ∩ (b ∪ d))))) | ||
Theorem | oa4v3v 934 | 4-variable OA to 3-variable OA (Godowski/Greechie Eq. IV). (Contributed by NM, 28-Nov-1998.) |
d ≤ b⊥ & e ≤ c⊥ & ((d ∪ b) ∩ (e ∪ c)) ≤ (b ∪ (d ∩ (e ∪ ((d ∪ e) ∩ (b ∪ c))))) & d = (a →2 b)⊥ & e = (a →2 c)⊥ ⇒ (b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) | ||
Theorem | oal42 935 | Derivation of Godowski/Greechie Eq. II from Eq. IV. (Contributed by NM, 25-Nov-1998.) |
(b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) ⇒ (b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ a⊥ | ||
Theorem | oa23 936 | Derivation of OA from Godowski/Greechie Eq. II. (Contributed by NM, 25-Nov-1998.) |
(c⊥ ∩ ((a →2 c) ∪ ((a →2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a →2 b)))))) ≤ a⊥ ⇒ ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) | ||
Theorem | oa4lem1 937 | Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.) |
a ≤ b⊥ & c ≤ d⊥ ⇒ (a ∪ b) ≤ ((a ∪ c)⊥ →2 b) | ||
Theorem | oa4lem2 938 | Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.) |
a ≤ b⊥ & c ≤ d⊥ ⇒ (c ∪ d) ≤ ((a ∪ c)⊥ →2 d) | ||
Theorem | oa4lem3 939 | Lemma for 3-var to 4-var OA. (Contributed by NM, 27-Nov-1998.) |
a ≤ b⊥ & c ≤ d⊥ ⇒ ((a ∪ b) ∩ (c ∪ d)) ≤ ((b ∪ d)⊥ ∪ (((a ∪ c)⊥ →2 b) ∩ ((a ∪ c)⊥ →2 d))) | ||
Theorem | distoah1 940 | Satisfaction of distributive law hypothesis. (Contributed by NM, 29-Nov-1998.) |
d = (a →2 b) & e = ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) & f = ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) ⇒ d ≤ (a →2 b) | ||
Theorem | distoah2 941 | Satisfaction of distributive law hypothesis. (Contributed by NM, 29-Nov-1998.) |
d = (a →2 b) & e = ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) & f = ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) ⇒ e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) | ||
Theorem | distoah3 942 | Satisfaction of distributive law hypothesis. (Contributed by NM, 29-Nov-1998.) |
d = (a →2 b) & e = ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) & f = ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) ⇒ f ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) | ||
Theorem | distoah4 943 | Satisfaction of distributive law hypothesis. (Contributed by NM, 29-Nov-1998.) |
d = (a →2 b) & e = ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) & f = ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) ⇒ (d ∩ (a →2 c)) ≤ f | ||
Theorem | distoa 944 | Derivation in OM of OA, assuming OA distributive law oadistd 1023. (Contributed by NM, 29-Nov-1998.) |
d = (a →2 b) & e = ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) & f = ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))) & (d ∩ (e ∪ f)) = ((d ∩ e) ∪ (d ∩ f)) ⇒ ((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) | ||
Theorem | oa3to4lem1 945 | Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). (Contributed by NM, 19-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & g = ((a ∩ b) ∪ (c ∩ d)) ⇒ b ≤ (a →1 g) | ||
Theorem | oa3to4lem2 946 | Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). (Contributed by NM, 19-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & g = ((a ∩ b) ∪ (c ∩ d)) ⇒ d ≤ (c →1 g) | ||
Theorem | oa3to4lem3 947 | Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). (Contributed by NM, 19-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & g = ((a ∩ b) ∪ (c ∩ d)) ⇒ (a ∩ (b ∪ (d ∩ ((a ∩ c) ∪ (b ∩ d))))) ≤ (a ∩ ((a →1 g) ∪ ((c →1 g) ∩ ((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g)))))) | ||
Theorem | oa3to4lem4 948 | Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). (Contributed by NM, 19-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & g = ((a ∩ b) ∪ (c ∩ d)) & (a ∩ ((a →1 g) ∪ ((c →1 g) ∩ ((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g)))))) ≤ ((a ∩ g) ∪ (c ∩ g)) ⇒ (a ∩ (b ∪ (d ∩ ((a ∩ c) ∪ (b ∩ d))))) ≤ g | ||
Theorem | oa3to4lem5 949 | Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable proof). (Contributed by NM, 19-Dec-1998.) |
((a ∪ b) ∩ (c ∪ d)) ≤ (a ∪ (b ∩ (d ∪ ((a ∪ c) ∩ (b ∪ d))))) ⇒ ((b ∪ a) ∩ (d ∪ c)) ≤ (a ∪ (b ∩ (d ∪ ((b ∪ d) ∩ (a ∪ c))))) | ||
Theorem | oa3to4lem6 950 | Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable). The first 2 hypotheses are those for 4-OA. The next 3 are variable substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic only. (Contributed by NM, 19-Dec-1998.) |
a ≤ b⊥ & c ≤ d⊥ & g = ((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) & e = a⊥ & f = c⊥ & (e ∩ ((e →1 g) ∪ ((f →1 g) ∩ ((e ∩ f) ∪ ((e →1 g) ∩ (f →1 g)))))) ≤ ((e ∩ g) ∪ (f ∩ g)) ⇒ ((a ∪ b) ∩ (c ∪ d)) ≤ (a ∪ (b ∩ (d ∪ ((a ∪ c) ∩ (b ∪ d))))) | ||
Theorem | oa3to4 951 | Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable). The first 2 hypotheses are those for 4-OA. The next 3 are variable substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic only. (Contributed by NM, 19-Dec-1998.) |
a ≤ b⊥ & c ≤ d⊥ & g = ((b⊥ ∩ a⊥ ) ∪ (d⊥ ∩ c⊥ )) & e = b⊥ & f = d⊥ & (e ∩ ((e →1 g) ∪ ((f →1 g) ∩ ((e ∩ f) ∪ ((e →1 g) ∩ (f →1 g)))))) ≤ ((e ∩ g) ∪ (f ∩ g)) ⇒ ((a ∪ b) ∩ (c ∪ d)) ≤ (b ∪ (a ∩ (c ∪ ((a ∪ c) ∩ (b ∪ d))))) | ||
Theorem | oa6todual 952 | Conventional to dual 6-variable OA law. (Contributed by NM, 22-Dec-1998.) |
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))) ⇒ (b ∩ (a ∪ (c ∩ (((a ∩ c) ∪ (b ∩ d)) ∪ (((a ∩ e) ∪ (b ∩ f)) ∩ ((c ∩ e) ∪ (d ∩ f))))))) ≤ (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) | ||
Theorem | oa6fromdual 953 | Dual to conventional 6-variable OA law. (Contributed by NM, 22-Dec-1998.) |
(b⊥ ∩ (a⊥ ∪ (c⊥ ∩ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ d⊥ )) ∪ (((a⊥ ∩ e⊥ ) ∪ (b⊥ ∩ f⊥ )) ∩ ((c⊥ ∩ e⊥ ) ∪ (d⊥ ∩ f⊥ ))))))) ≤ (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) ⇒ (((a ∪ b) ∩ (c ∪ d)) ∩ (e ∪ f)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ e) ∩ (b ∪ f)) ∪ ((c ∪ e) ∩ (d ∪ f))))))) | ||
Theorem | oa6fromdualn 954 | Dual to conventional 6-variable OA law. (Contributed by NM, 24-Dec-1998.) |
(b ∩ (a ∪ (c ∩ (((a ∩ c) ∪ (b ∩ d)) ∪ (((a ∩ e) ∪ (b ∩ f)) ∩ ((c ∩ e) ∪ (d ∩ f))))))) ≤ (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) ⇒ (((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))) | ||
Theorem | oa6to4h1 955 | Satisfaction of 6-variable OA law hypothesis. (Contributed by NM, 22-Dec-1998.) |
b⊥ = (a →1 g)⊥ & d⊥ = (c →1 g)⊥ & f⊥ = (e →1 g)⊥ ⇒ a⊥ ≤ b⊥ ⊥ | ||
Theorem | oa6to4h2 956 | Satisfaction of 6-variable OA law hypothesis. (Contributed by NM, 22-Dec-1998.) |
b⊥ = (a →1 g)⊥ & d⊥ = (c →1 g)⊥ & f⊥ = (e →1 g)⊥ ⇒ c⊥ ≤ d⊥ ⊥ | ||
Theorem | oa6to4h3 957 | Satisfaction of 6-variable OA law hypothesis. (Contributed by NM, 22-Dec-1998.) |
b⊥ = (a →1 g)⊥ & d⊥ = (c →1 g)⊥ & f⊥ = (e →1 g)⊥ ⇒ e⊥ ≤ f⊥ ⊥ | ||
Theorem | oa6to4 958 | Derivation of 4-variable proper OA law, assuming 6-variable OA law. (Contributed by NM, 22-Dec-1998.) |
b⊥ = (a →1 g)⊥ & d⊥ = (c →1 g)⊥ & f⊥ = (e →1 g)⊥ & (((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))) ⇒ ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ (((a ∩ g) ∪ (c ∩ g)) ∪ (e ∩ g)) | ||
Theorem | oa4b 959 | Derivation of 4-OA law variant. (Contributed by NM, 22-Dec-1998.) |
((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ (((a ∩ g) ∪ (c ∩ g)) ∪ (e ∩ g)) ⇒ ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g | ||
Theorem | oa4to6lem1 960 | Lemma for orthoarguesian law (4-variable to 6-variable proof). (Contributed by NM, 18-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & e⊥ ≤ f & g = (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) ⇒ b ≤ (a →1 g) | ||
Theorem | oa4to6lem2 961 | Lemma for orthoarguesian law (4-variable to 6-variable proof). (Contributed by NM, 18-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & e⊥ ≤ f & g = (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) ⇒ d ≤ (c →1 g) | ||
Theorem | oa4to6lem3 962 | Lemma for orthoarguesian law (4-variable to 6-variable proof). (Contributed by NM, 18-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & e⊥ ≤ f & g = (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) ⇒ f ≤ (e →1 g) | ||
Theorem | oa4to6lem4 963 | Lemma for orthoarguesian law (4-variable to 6-variable proof). (Contributed by NM, 18-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & e⊥ ≤ f & g = (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) ⇒ (b ∩ (a ∪ (c ∩ (((a ∩ c) ∪ (b ∩ d)) ∪ (((a ∩ e) ∪ (b ∩ f)) ∩ ((c ∩ e) ∪ (d ∩ f))))))) ≤ ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) | ||
Theorem | oa4to6dual 964 | Lemma for orthoarguesian law (4-variable to 6-variable proof). (Contributed by NM, 19-Dec-1998.) |
a⊥ ≤ b & c⊥ ≤ d & e⊥ ≤ f & g = (((a ∩ b) ∪ (c ∩ d)) ∪ (e ∩ f)) & ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g ⇒ (b ∩ (a ∪ (c ∩ (((a ∩ c) ∪ (b ∩ d)) ∪ (((a ∩ e) ∪ (b ∩ f)) ∩ ((c ∩ e) ∪ (d ∩ f))))))) ≤ g | ||
Theorem | oa4to6 965 | Orthoarguesian law (4-variable to 6-variable proof). The first 3 hypotheses are those for 6-OA. The next 4 are variable substitutions into 4-OA. The last is the 4-OA. The proof uses OM logic only. (Contributed by NM, 19-Dec-1998.) |
a ≤ b⊥ & c ≤ d⊥ & e ≤ f⊥ & g = (((a⊥ ∩ b⊥ ) ∪ (c⊥ ∩ d⊥ )) ∪ (e⊥ ∩ f⊥ )) & h = a⊥ & j = c⊥ & k = e⊥ & ((h →1 g) ∩ (h ∪ (j ∩ (((h ∩ j) ∪ ((h →1 g) ∩ (j →1 g))) ∪ (((h ∩ k) ∪ ((h →1 g) ∩ (k →1 g))) ∩ ((j ∩ k) ∪ ((j →1 g) ∩ (k →1 g)))))))) ≤ g ⇒ (((a ∪ b) ∩ (c ∪ d)) ∩ (e ∪ f)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ e) ∩ (b ∪ f)) ∪ ((c ∪ e) ∩ (d ∪ f))))))) | ||
Theorem | oa4btoc 966 | Derivation of 4-OA law variant. (Contributed by NM, 22-Dec-1998.) |
((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g ⇒ (a⊥ ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g | ||
Theorem | oa4ctob 967 | Derivation of 4-OA law variant. (Contributed by NM, 22-Dec-1998.) |
(a⊥ ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g ⇒ ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g | ||
Theorem | oa4ctod 968 | Derivation of 4-OA law variant. (Contributed by NM, 24-Dec-1998.) |
(a⊥ ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))))) ≤ d ⇒ (b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))) ≤ (a⊥ →1 d) | ||
Theorem | oa4dtoc 969 | Derivation of 4-OA law variant. (Contributed by NM, 24-Dec-1998.) |
(b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))) ≤ (a⊥ →1 d) ⇒ (a⊥ ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))))) ≤ d | ||
Theorem | oa4dcom 970 | Lemma commuting terms. (Contributed by NM, 24-Dec-1998.) |
(b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))) = (b ∩ (((b ∩ a) ∪ ((b →1 d) ∩ (a →1 d))) ∪ (((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d))) ∩ ((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d)))))) | ||
Theorem | oa8todual 971 | Conventional to dual 8-variable OA law. (Contributed by NM, 8-May-2000.) |
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥ ))) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))))))) ⇒ (b ∩ (a ∪ (c ∩ ((((a ∩ c) ∪ (b ∩ d)) ∪ (((a ∩ g) ∪ (b ∩ h)) ∩ ((c ∩ g) ∪ (d ∩ h)))) ∪ ((((a ∩ e) ∪ (b ∩ f)) ∪ (((a ∩ g) ∪ (b ∩ h)) ∩ ((e ∩ g) ∪ (f ∩ h)))) ∩ (((c ∩ e) ∪ (d ∩ f)) ∪ (((c ∩ g) ∪ (d ∩ h)) ∩ ((e ∩ g) ∪ (f ∩ h))))))))) ≤ (((a ∩ b) ∪ (c ∩ d)) ∪ ((e ∩ f) ∪ (g ∩ h))) | ||
Theorem | oa8to5 972 | Orthoarguesian law 5OA converted from 8 to 5 variables. (Contributed by NM, 8-May-2000.) |
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥ ))) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))))))) & b⊥ = (a →1 j)⊥ & d⊥ = (c →1 j)⊥ & f⊥ = (e →1 j)⊥ & h⊥ = (g →1 j)⊥ ⇒ ((a →1 j) ∩ (a ∪ (c ∩ ((((a ∩ c) ∪ ((a →1 j) ∩ (c →1 j))) ∪ (((a ∩ g) ∪ ((a →1 j) ∩ (g →1 j))) ∩ ((c ∩ g) ∪ ((c →1 j) ∩ (g →1 j))))) ∪ ((((a ∩ e) ∪ ((a →1 j) ∩ (e →1 j))) ∪ (((a ∩ g) ∪ ((a →1 j) ∩ (g →1 j))) ∩ ((e ∩ g) ∪ ((e →1 j) ∩ (g →1 j))))) ∩ (((c ∩ e) ∪ ((c →1 j) ∩ (e →1 j))) ∪ (((c ∩ g) ∪ ((c →1 j) ∩ (g →1 j))) ∩ ((e ∩ g) ∪ ((e →1 j) ∩ (g →1 j)))))))))) ≤ (((a ∩ j) ∪ (c ∩ j)) ∪ ((e ∩ j) ∪ (g ∩ j))) | ||
Theorem | oa4to4u 973 | A "universal" 4-OA. The hypotheses are the standard proper 4-OA and substitutions into it. (Contributed by NM, 28-Dec-1998.) |
((e →1 d) ∩ (e ∪ (f ∩ (((e ∩ f) ∪ ((e →1 d) ∩ (f →1 d))) ∪ (((e ∩ g) ∪ ((e →1 d) ∩ (g →1 d))) ∩ ((f ∩ g) ∪ ((f →1 d) ∩ (g →1 d)))))))) ≤ (((e ∩ d) ∪ (f ∩ d)) ∪ (g ∩ d)) & e = (a⊥ →1 d) & f = (b⊥ →1 d) & g = (c⊥ →1 d) ⇒ ((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a →1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a →1 d) ∩ (c →1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b →1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ ((((a →1 d) ∩ (a⊥ →1 d)) ∪ ((b →1 d) ∩ (b⊥ →1 d))) ∪ ((c →1 d) ∩ (c⊥ →1 d))) | ||
Theorem | oa4to4u2 974 | A weaker-looking "universal" proper 4-OA. (Contributed by NM, 29-Dec-1998.) |
((e →1 d) ∩ (e ∪ (f ∩ (((e ∩ f) ∪ ((e →1 d) ∩ (f →1 d))) ∪ (((e ∩ g) ∪ ((e →1 d) ∩ (g →1 d))) ∩ ((f ∩ g) ∪ ((f →1 d) ∩ (g →1 d)))))))) ≤ (((e ∩ d) ∪ (f ∩ d)) ∪ (g ∩ d)) & e = (a⊥ →1 d) & f = (b⊥ →1 d) & g = (c⊥ →1 d) ⇒ ((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a →1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a →1 d) ∩ (c →1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b →1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ d | ||
Theorem | oa4uto4g 975 | Derivation of "Godowski/Greechie" 4-variable proper OA law variant from "universal" variant oa4to4u2 974. (Contributed by NM, 28-Dec-1998.) |
((b⊥ →1 d) ∩ ((b⊥ ⊥ →1 d) ∪ ((a⊥ ⊥ →1 d) ∩ ((((b⊥ →1 d) ∩ (a⊥ →1 d)) ∪ ((b⊥ ⊥ →1 d) ∩ (a⊥ ⊥ →1 d))) ∪ ((((b⊥ →1 d) ∩ (c⊥ →1 d)) ∪ ((b⊥ ⊥ →1 d) ∩ (c⊥ ⊥ →1 d))) ∩ (((a⊥ →1 d) ∩ (c⊥ →1 d)) ∪ ((a⊥ ⊥ →1 d) ∩ (c⊥ ⊥ →1 d)))))))) ≤ d & h = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) ⇒ ((a →1 d) ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ h)) ≤ (b →1 d) | ||
Theorem | oa4gto4u 976 | A "universal" 4-OA derived from the Godowski/Greechie form. The hypotheses are the Godowski/Greechie form of the proper 4-OA and substitutions into it. (Contributed by NM, 30-Dec-1998.) |
((e →1 d) ∩ (((e ∩ f) ∪ ((e →1 d) ∩ (f →1 d))) ∪ (((e ∩ g) ∪ ((e →1 d) ∩ (g →1 d))) ∩ ((f ∩ g) ∪ ((f →1 d) ∩ (g →1 d)))))) ≤ (f →1 d) & f = (a →1 d) & e = (b →1 d) & g = (c →1 d) ⇒ ((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a →1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a →1 d) ∩ (c →1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b →1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ d | ||
Theorem | oa4uto4 977 | Derivation of standard 4-variable proper OA law from "universal" variant oa4to4u2 974. (Contributed by NM, 30-Dec-1998.) |
((a →1 d) ∩ ((a⊥ →1 d) ∪ ((b⊥ →1 d) ∩ ((((a →1 d) ∩ (b →1 d)) ∪ ((a⊥ →1 d) ∩ (b⊥ →1 d))) ∪ ((((a →1 d) ∩ (c →1 d)) ∪ ((a⊥ →1 d) ∩ (c⊥ →1 d))) ∩ (((b →1 d) ∩ (c →1 d)) ∪ ((b⊥ →1 d) ∩ (c⊥ →1 d)))))))) ≤ d ⇒ ((a →1 d) ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))))) ≤ d | ||
Theorem | oa3-2lema 978 | Lemma for 3-OA(2). Equivalence with substitution into 4-OA. (Contributed by NM, 24-Dec-1998.) |
((a →1 c) ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c))) ∪ (((a ∩ 0) ∪ ((a →1 c) ∩ (0 →1 c))) ∩ ((b ∩ 0) ∪ ((b →1 c) ∩ (0 →1 c)))))))) = ((a →1 c) ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) | ||
Theorem | oa3-2lemb 979 | Lemma for 3-OA(2). Equivalence with substitution into 4-OA. (Contributed by NM, 24-Dec-1998.) |
((a →1 c) ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c))) ∪ (((a ∩ c) ∪ ((a →1 c) ∩ (c →1 c))) ∩ ((b ∩ c) ∪ ((b →1 c) ∩ (c →1 c)))))))) = ((a →1 c) ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) | ||
Theorem | oa3-6lem 980 | Lemma for 3-OA(6). Equivalence with substitution into 4-OA. (Contributed by NM, 24-Dec-1998.) |
((a →1 c) ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c))) ∪ (((a ∩ 1) ∪ ((a →1 c) ∩ (1 →1 c))) ∩ ((b ∩ 1) ∪ ((b →1 c) ∩ (1 →1 c)))))))) = ((a →1 c) ∩ (a ∪ (b ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a →1 c) ∩ (b →1 c)))))) | ||
Theorem | oa3-3lem 981 | Lemma for 3-OA(3). Equivalence with substitution into 6-OA dual. (Contributed by NM, 24-Dec-1998.) |
(a⊥ ∩ (a ∪ (b ∩ (((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ 1) ∪ (a⊥ ∩ c)) ∩ ((b ∩ 1) ∪ (b⊥ ∩ c))))))) = (a⊥ ∩ (a ∪ (b ∩ ((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) | ||
Theorem | oa3-1lem 982 | Lemma for 3-OA(1). Equivalence with substitution into 6-OA dual. (Contributed by NM, 25-Dec-1998.) |
(1 ∩ (0 ∪ (a ∩ (((0 ∩ a) ∪ (1 ∩ (a →1 c))) ∪ (((0 ∩ b) ∪ (1 ∩ (b →1 c))) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))))) = (a ∩ ((a →1 c) ∪ ((b →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) | ||
Theorem | oa3-4lem 983 | Lemma for 3-OA(4). Equivalence with substitution into 6-OA dual. (Contributed by NM, 25-Dec-1998.) |
(a⊥ ∩ (a ∪ (b ∩ (((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (((a ∩ c) ∪ (a⊥ ∩ 1)) ∩ ((b ∩ c) ∪ (b⊥ ∩ 1))))))) = (a⊥ ∩ (a ∪ (b ∩ ((a ≡ b) ∪ ((a →1 c) ∩ (b →1 c)))))) | ||
Theorem | oa3-5lem 984 | Lemma for 3-OA(5). Equivalence with substitution into 6-OA dual. (Contributed by NM, 25-Dec-1998.) |
((a →1 c) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 c) ∩ 1)) ∪ (((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c))) ∩ ((c ∩ b) ∪ (1 ∩ (b →1 c)))))))) = ((a →1 c) ∩ (a ∪ (c ∩ ((a →1 c) ∪ ((b →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))))) | ||
Theorem | oa3-u1lem 985 | Lemma for a "universal" 3-OA. Equivalence with substitution into 6-OA dual. (Contributed by NM, 26-Dec-1998.) |
(1 ∩ (c ∪ ((a⊥ →1 c) ∩ (((c ∩ (a⊥ →1 c)) ∪ (1 ∩ (a →1 c))) ∪ (((c ∩ (b⊥ →1 c)) ∪ (1 ∩ (b →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a →1 c) ∩ (b →1 c)))))))) = (c ∪ ((a⊥ →1 c) ∩ ((a →1 c) ∪ ((b →1 c) ∩ (((a →1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) | ||
Theorem | oa3-u2lem 986 | Lemma for a "universal" 3-OA. Equivalence with substitution into 6-OA dual. (Contributed by NM, 27-Dec-1998.) |
((a →1 c) ∩ ((a⊥ →1 c) ∪ (c ∩ ((((a⊥ →1 c) ∩ c) ∪ ((a →1 c) ∩ 1)) ∪ ((((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a →1 c) ∩ (b →1 c))) ∩ ((c ∩ (b⊥ →1 c)) ∪ (1 ∩ (b →1 c)))))))) = ((a →1 c) ∩ ((a⊥ →1 c) ∪ (c ∩ ((a →1 c) ∪ ((b →1 c) ∩ (((a →1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))))) | ||
Theorem | oa3-6to3 987 | Derivation of 3-OA variant (3) from (6). (Contributed by NM, 24-Dec-1998.) |
((a →1 c) ∩ (a ∪ (b ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c ⇒ (a⊥ ∩ (a ∪ (b ∩ ((a ≡ b) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))) ≤ c | ||
Theorem | oa3-2to4 988 | Derivation of 3-OA variant (4) from (2). (Contributed by NM, 24-Dec-1998.) |
((a →1 c) ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c ⇒ (a⊥ ∩ (a ∪ (b ∩ ((a ≡ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c | ||
Theorem | oa3-2wto2 989 | Derivation of 3-OA variant from weaker version. (Contributed by NM, 25-Dec-1998.) |
(a⊥ ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c ⇒ ((a →1 c) ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ c | ||
Theorem | oa3-2to2s 990 | Derivation of 3-OA variant from weaker version. (Contributed by NM, 25-Dec-1998.) |
((a →1 d) ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d)))))) ≤ d & d = ((a ∩ c) ∪ (b ∩ c)) ⇒ ((a →1 c) ∩ (a ∪ (b ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ ((a ∩ c) ∪ (b ∩ c)) | ||
Theorem | oa3-u1 991 | Derivation of a "universal" 3-OA. The hypothesis is a substitution instance of the proper 4-OA. (Contributed by NM, 27-Dec-1998.) |
((c →1 c) ∩ (c ∪ ((a⊥ →1 c) ∩ (((c ∩ (a⊥ →1 c)) ∪ ((c →1 c) ∩ ((a⊥ →1 c) →1 c))) ∪ (((c ∩ (b⊥ →1 c)) ∪ ((c →1 c) ∩ ((b⊥ →1 c) →1 c))) ∩ (((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ (((a⊥ →1 c) →1 c) ∩ ((b⊥ →1 c) →1 c)))))))) ≤ c ⇒ (c ∪ ((a⊥ →1 c) ∩ ((a →1 c) ∪ ((b →1 c) ∩ (((a →1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c))))))) ≤ c | ||
Theorem | oa3-u2 992 | Derivation of a "universal" 3-OA. The hypothesis is a substitution instance of the proper 4-OA. (Contributed by NM, 27-Dec-1998.) |
(((a⊥ →1 c) →1 c) ∩ ((a⊥ →1 c) ∪ (c ∩ ((((a⊥ →1 c) ∩ c) ∪ (((a⊥ →1 c) →1 c) ∩ (c →1 c))) ∪ ((((a⊥ →1 c) ∩ (b⊥ →1 c)) ∪ (((a⊥ →1 c) →1 c) ∩ ((b⊥ →1 c) →1 c))) ∩ ((c ∩ (b⊥ →1 c)) ∪ ((c →1 c) ∩ ((b⊥ →1 c) →1 c)))))))) ≤ c ⇒ ((a →1 c) ∩ ((a⊥ →1 c) ∪ (c ∩ ((a →1 c) ∪ ((b →1 c) ∩ (((a →1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))))))) ≤ c | ||
Theorem | oa3-1to5 993 | Derivation of an equivalent of the second "universal" 3-OA U2 from an equivalent of the first "universal" 3-OA U1. This shows that U2 is redundant in a system containg U1. The hypothesis is Theorem oal1 1000. (Contributed by NM, 1-Jan-1999.) |
((a →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))) ≤ (b →1 c) ⇒ (c ∩ ((b →1 c) ∪ ((a →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))))) ≤ (b⊥ →1 c) | ||
In this section, we postulate a temporary axiom (intended not to be used outside of this section) for the OA distributive law, and derive from it the proper 4-OA. This shows that the OA distributive law implies the proper 4-OA (and therefore the 6-OA). | ||
Axiom | ax-oadist 994 | OA Distributive law. In this section, we postulate this temporary axiom (intended not to be used outside of this section) for the OA distributive law, and derive from it the 6-OA, in Theorem d6oa 997. This together with the derivation of the distributive law in theorem 4oadist 1044 shows that the OA distributive law is equivalent to the 6-OA. (Contributed by NM, 30-Dec-1998.) |
e = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) & f = (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ e) & h ≤ (a →1 d) & j ≤ f & k ≤ f & (h ∩ (b →1 d)) ≤ k ⇒ (h ∩ (j ∪ k)) = ((h ∩ j) ∪ (h ∩ k)) | ||
Theorem | d3oa 995 | Derivation of 3-OA from OA distributive law. (Contributed by NM, 30-Dec-1998.) |
f = ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c))) ⇒ ((a →1 c) ∩ f) ≤ (b →1 c) | ||
Theorem | d4oa 996 | Variant of proper 4-OA proved from OA distributive law. (Contributed by NM, 30-Dec-1998.) |
e = ((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) & f = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) ⇒ ((a →1 d) ∩ (e ∪ f)) ≤ (b →1 d) | ||
Theorem | d6oa 997 | Derivation of 6-variable orthoarguesian law from OA distributive law. (Contributed by NM, 30-Dec-1998.) |
a ≤ b⊥ & c ≤ d⊥ & e ≤ f⊥ ⇒ (((a ∪ b) ∩ (c ∪ d)) ∩ (e ∪ f)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ e) ∩ (b ∪ f)) ∪ ((c ∪ e) ∩ (d ∪ f))))))) | ||
R. Godowski and R. Greechie, Demonstratio Mathematica 17, 241 (1984). | ||
Axiom | ax-3oa 998 | 3-variable consequence of the orthoarguesion law. (Contributed by NM, 20-Jul-1999.) |
((a →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))) ≤ (b →1 c) | ||
Theorem | oal2 999 | Orthoarguesian law - →2 version. (Contributed by NM, 20-Jul-1999.) |
((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) | ||
Theorem | oal1 1000 | Orthoarguesian law - →1 version derived from →1 version. (Contributed by NM, 25-Nov-1998.) |
((a →1 c) ∩ ((a ∩ b) ∪ ((a →1 c) ∩ (b →1 c)))) ≤ (b →1 c) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |