Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dp15lemg | GIF version |
Description: Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM, 1-Apr-2012.) |
Ref | Expression |
---|---|
dp15lema.1 | d = (a2 ∪ (a0 ∩ (a1 ∪ b1))) |
dp15lema.2 | p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
dp15lema.3 | e = (b0 ∩ (a0 ∪ p0)) |
dp15lemg.4 | c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
dp15lemg.5 | c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
Ref | Expression |
---|---|
dp15lemg | (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp15lemg.4 | . . . 4 c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) | |
2 | dp15lemg.5 | . . . . 5 c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) | |
3 | 2 | ror 71 | . . . 4 (c1 ∪ (b1 ∩ (a0 ∪ a1))) = (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
4 | 1, 3 | 2or 72 | . . 3 (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
5 | 4 | cm 61 | . 2 (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) |
6 | orass 75 | . . 3 ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) = (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) | |
7 | 6 | cm 61 | . 2 (c0 ∪ (c1 ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
8 | 5, 7 | tr 62 | 1 (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a2 31 ax-a3 32 ax-r1 35 ax-r2 36 ax-r5 38 |
This theorem is referenced by: dp15lemh 1161 |
Copyright terms: Public domain | W3C validator |