Theorem List for Quantum Logic Explorer - 1101-1200 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | lem4.6.6i4j2 1101 |
Equation 4.14 of [MegPav2000] p. 23. The
variable i in the paper is set
to 4, and j is set to 2. (Contributed by Roy F. Longton, 2-Jul-2005.)
|
((a →4 b) ∪ (a
→2 b)) = (a →0 b) |
|
Theorem | com3iia 1102 |
The dual of com3ii 457. (Contributed by Roy F. Longton, 2-Jul-2005.)
|
a C b ⇒ (a ∪ (a⊥ ∩ b)) = (a ∪
b) |
|
Theorem | lem4.6.7 1103 |
Equation 4.15 of [MegPav2000] p. 23.
(Contributed by Roy F. Longton,
3-Jul-2005.)
|
a⊥ ≤ b ⇒ b ≤ (a
→1 b) |
|
0.8 Weakly distributive ortholattices
(WDOL)
|
|
0.8.1 WDOL law
|
|
Axiom | ax-wdol 1104 |
The WDOL (weakly distributive ortholattice) axiom. (Contributed by NM,
4-Mar-2006.)
|
((a ≡ b)
∪ (a ≡ b⊥ )) = 1 |
|
Theorem | wdcom 1105 |
Any two variables (weakly) commute in a WDOL. (Contributed by NM,
4-Mar-2006.)
|
C (a, b) =
1 |
|
Theorem | wdwom 1106 |
Prove 2-variable WOML rule in WDOL. This will make all WOML theorems
available to us. The proof does not use ax-r3 439
or ax-wom 361. Since
this is the same as ax-wom 361, from here on we will freely use those
theorems invoking ax-wom 361. (Contributed by NM, 4-Mar-2006.)
|
(a⊥ ∪ (a ∩ b)) =
1 ⇒ (b ∪ (a⊥ ∩ b⊥ )) = 1 |
|
Theorem | wddi1 1107 |
Prove the weak distributive law in WDOL. This is our first WDOL theorem
making use of ax-wom 361, which is justified by wdwom 1106. (Contributed by
NM, 4-Mar-2006.)
|
((a ∩ (b
∪ c)) ≡ ((a ∩ b)
∪ (a ∩ c))) = 1 |
|
Theorem | wddi2 1108 |
The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
|
(((a ∪ b)
∩ c) ≡ ((a ∩ c)
∪ (b ∩ c))) = 1 |
|
Theorem | wddi3 1109 |
The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
|
((a ∪ (b
∩ c)) ≡ ((a ∪ b)
∩ (a ∪ c))) = 1 |
|
Theorem | wddi4 1110 |
The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
|
(((a ∩ b)
∪ c) ≡ ((a ∪ c)
∩ (b ∪ c))) = 1 |
|
Theorem | wdid0id5 1111 |
Show that quantum identity follows from classical identity in a WDOL.
(Contributed by NM, 5-Mar-2006.)
|
(a ≡0 b) = 1 ⇒ (a ≡ b) =
1 |
|
Theorem | wdid0id1 1112 |
Show a quantum identity that follows from classical identity in a WDOL.
(Contributed by NM, 5-Mar-2006.)
|
(a ≡0 b) = 1 ⇒ (a ≡1 b) = 1 |
|
Theorem | wdid0id2 1113 |
Show a quantum identity that follows from classical identity in a WDOL.
(Contributed by NM, 5-Mar-2006.)
|
(a ≡0 b) = 1 ⇒ (a ≡2 b) = 1 |
|
Theorem | wdid0id3 1114 |
Show a quantum identity that follows from classical identity in a WDOL.
(Contributed by NM, 5-Mar-2006.)
|
(a ≡0 b) = 1 ⇒ (a ≡3 b) = 1 |
|
Theorem | wdid0id4 1115 |
Show a quantum identity that follows from classical identity in a WDOL.
(Contributed by NM, 5-Mar-2006.)
|
(a ≡0 b) = 1 ⇒ (a ≡4 b) = 1 |
|
Theorem | wdka4o 1116 |
Show WDOL analog of WOM law. (Contributed by NM, 5-Mar-2006.)
|
(a ≡0 b) = 1 ⇒ ((a ∪ c)
≡0 (b ∪ c)) = 1 |
|
Theorem | wddi-0 1117 |
The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
|
((a ∩ (b
∪ c)) ≡0 ((a ∩ b)
∪ (a ∩ c))) = 1 |
|
Theorem | wddi-1 1118 |
The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
|
((a ∩ (b
∪ c)) ≡1 ((a ∩ b)
∪ (a ∩ c))) = 1 |
|
Theorem | wddi-2 1119 |
The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
|
((a ∩ (b
∪ c)) ≡2 ((a ∩ b)
∪ (a ∩ c))) = 1 |
|
Theorem | wddi-3 1120 |
The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
|
((a ∩ (b
∪ c)) ≡3 ((a ∩ b)
∪ (a ∩ c))) = 1 |
|
Theorem | wddi-4 1121 |
The weak distributive law in WDOL. (Contributed by NM, 5-Mar-2006.)
|
((a ∩ (b
∪ c)) ≡4 ((a ∩ b)
∪ (a ∩ c))) = 1 |
|
0.9 Modular ortholattices
(MOL)
|
|
0.9.1 Modular law
|
|
Axiom | ax-ml 1122 |
The modular law axiom. (Contributed by NM, 15-Mar-2010.)
|
((a ∪ b)
∩ (a ∪ c)) ≤ (a
∪ (b ∩ (a ∪ c))) |
|
Theorem | ml 1123 |
Modular law in equational form. (Contributed by NM, 15-Mar-2010.)
(Revised by NM, 31-Mar-2011.)
|
(a ∪ (b
∩ (a ∪ c))) = ((a
∪ b) ∩ (a ∪ c)) |
|
Theorem | mldual 1124 |
Dual of modular law. (Contributed by NM, 15-Mar-2010.) (Revised by NM,
31-Mar-2011.)
|
(a ∩ (b
∪ (a ∩ c))) = ((a
∩ b) ∪ (a ∩ c)) |
|
Theorem | ml2i 1125 |
Inference version of modular law. (Contributed by NM, 1-Apr-2012.)
|
c ≤ a ⇒ (c ∪ (b
∩ a)) = ((c ∪ b)
∩ a) |
|
Theorem | mli 1126 |
Inference version of modular law. (Contributed by NM, 1-Apr-2012.)
|
c ≤ a ⇒ ((a ∩ b)
∪ c) = (a ∩ (b
∪ c)) |
|
Theorem | mldual2i 1127 |
Inference version of dual of modular law. (Contributed by NM,
1-Apr-2012.)
|
a ≤ c ⇒ (c ∩ (b
∪ a)) = ((c ∩ b)
∪ a) |
|
Theorem | mlduali 1128 |
Inference version of dual of modular law. (Contributed by NM,
1-Apr-2012.)
|
a ≤ c ⇒ ((a ∪ b)
∩ c) = (a ∪ (b
∩ c)) |
|
Theorem | ml3le 1129 |
Form of modular law that swaps two terms. (Contributed by NM,
1-Apr-2012.)
|
(a ∪ (b
∩ (c ∪ a))) ≤ (a
∪ (c ∩ (b ∪ a))) |
|
Theorem | ml3 1130 |
Form of modular law that swaps two terms. (Contributed by NM,
1-Apr-2012.)
|
(a ∪ (b
∩ (c ∪ a))) = (a ∪
(c ∩ (b ∪ a))) |
|
Theorem | vneulem1 1131 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.)
|
(((x ∪ y)
∪ u) ∩ w) = (((x ∪
y) ∪ u) ∩ ((u
∪ w) ∩ w)) |
|
Theorem | vneulem2 1132 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.)
|
(((x ∪ y)
∪ u) ∩ ((u ∪ w)
∩ w)) = ((((x ∪ y)
∩ (u ∪ w)) ∪ u)
∩ w) |
|
Theorem | vneulem3 1133 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.)
|
((x ∪ y)
∩ (u ∪ w)) = 0 ⇒ ((((x ∪ y)
∩ (u ∪ w)) ∪ u)
∩ w) = (u ∩ w) |
|
Theorem | vneulem4 1134 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.)
|
((x ∪ y)
∩ (u ∪ w)) = 0 ⇒ (((x ∪ y)
∪ u) ∩ w) = (u ∩
w) |
|
Theorem | vneulem5 1135 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.)
|
(((x ∪ y)
∪ u) ∩ ((x ∪ y)
∪ w)) = ((x ∪ y)
∪ (((x ∪ y) ∪ u)
∩ w)) |
|
Theorem | vneulem6 1136 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 15-Mar-2010.) (Revised by NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ (((a ∪ b)
∪ d) ∩ ((b ∪ c)
∪ d)) = ((c ∩ a)
∪ (b ∪ d)) |
|
Theorem | vneulem7 1137 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ ((c ∩ a)
∪ (b ∪ d)) = (b ∪
d) |
|
Theorem | vneulem8 1138 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ (((a ∪ b)
∪ d) ∩ ((b ∪ c)
∪ d)) = (b ∪ d) |
|
Theorem | vneulem9 1139 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ (((a ∪ b)
∪ d) ∩ ((a ∪ b)
∪ c)) = ((c ∩ d)
∪ (a ∪ b)) |
|
Theorem | vneulem10 1140 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ (((a ∪ b)
∪ c) ∩ ((a ∪ c)
∪ d)) = (a ∪ c) |
|
Theorem | vneulem11 1141 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ (((b ∪ c)
∪ d) ∩ ((a ∪ c)
∪ d)) = ((c ∪ d)
∪ (a ∩ b)) |
|
Theorem | vneulem12 1142 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
(((c ∩ d)
∪ (a ∪ b)) ∩ ((c
∪ d) ∪ (a ∩ b))) =
((c ∩ d) ∪ ((a
∪ b) ∩ ((c ∪ d)
∪ (a ∩ b)))) |
|
Theorem | vneulem13 1143 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ ((c ∩ d)
∪ ((a ∪ b) ∩ ((c
∪ d) ∪ (a ∩ b)))) =
((c ∩ d) ∪ (a
∩ b)) |
|
Theorem | vneulem14 1144 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ (((c ∩ d)
∪ (a ∪ b)) ∩ ((c
∪ d) ∪ (a ∩ b))) =
((c ∩ d) ∪ (a
∩ b)) |
|
Theorem | vneulem15 1145 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ ((a ∪ c)
∩ (b ∪ d)) = ((((a
∪ b) ∪ c) ∩ ((a
∪ c) ∪ d)) ∩ (((a
∪ b) ∪ d) ∩ ((b
∪ c) ∪ d))) |
|
Theorem | vneulem16 1146 |
Part of von Neumann's lemma. Lemma 9, Kalmbach p. 96. (Contributed by
NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ ((((a ∪ b)
∪ c) ∩ ((a ∪ c)
∪ d)) ∩ (((a ∪ b)
∪ d) ∩ ((b ∪ c)
∪ d))) = ((a ∩ b)
∪ (c ∩ d)) |
|
Theorem | vneulem 1147 |
von Neumann's modular law lemma. Lemma 9, Kalmbach p. 96. (Contributed
by NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ ((a ∪ c)
∩ (b ∪ d)) = ((a ∩
b) ∪ (c ∩ d)) |
|
Theorem | vneulemexp 1148 |
Expanded version of vneulem 1147. (Contributed by NM, 31-Mar-2011.)
|
((a ∪ b)
∩ (c ∪ d)) = 0 ⇒ ((a ∪ c)
∩ (b ∪ d)) = ((a ∩
b) ∪ (c ∩ d)) |
|
Theorem | l42modlem1 1149 |
Lemma for l42mod 1151. (Contributed by NM, 8-Apr-2012.)
|
(((a ∪ b)
∪ d) ∩ ((a ∪ b)
∪ e)) = ((a ∪ b)
∪ ((a ∪ d) ∩ (b
∪ e))) |
|
Theorem | l42modlem2 1150 |
Lemma for l42mod 1151. (Contributed by NM, 8-Apr-2012.)
|
((((a ∪ b)
∩ c) ∪ d) ∩ e)
≤ (((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ e)) |
|
Theorem | l42mod 1151 |
An equation that fails in OML L42 when converted to a Hilbert space
equation. (Contributed by NM, 8-Apr-2012.)
|
((((a ∪ b)
∩ c) ∪ d) ∩ e)
≤ ((a ∪ b) ∪ ((a
∪ d) ∩ (b ∪ e))) |
|
Theorem | modexp 1152 |
Expansion by modular law. (Contributed by NM, 10-Apr-2012.)
|
(a ∩ (b
∪ c)) = (a ∩ (b
∪ (c ∩ (a ∪ b)))) |
|
0.9.2 Arguesian law
|
|
Axiom | ax-arg 1153 |
The Arguesian law as an axiom. (Contributed by NM, 1-Apr-2012.)
|
((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ (a2 ∪ b2) ⇒ ((a0 ∪ a1) ∩ (b0 ∪ b1)) ≤ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) |
|
Theorem | dp15lema 1154 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
1-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0)) ⇒ ((a0 ∪ e) ∩ (a1 ∪ b1)) ≤ (d ∪ b2) |
|
Theorem | dp15lemb 1155 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
1-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0)) ⇒ ((a0 ∪ a1) ∩ (e ∪ b1)) ≤ (((a0 ∪ d) ∩ (e
∪ b2)) ∪ ((a1 ∪ d) ∩ (b1 ∪ b2))) |
|
Theorem | dp15lemc 1156 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
10-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0)) ⇒ ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) |
|
Theorem | dp15lemd 1157 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
1-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0)) ⇒ (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) = (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) |
|
Theorem | dp15leme 1158 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
1-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0)) ⇒ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) |
|
Theorem | dp15lemf 1159 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
1-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0)) ⇒ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
|
Theorem | dp15lemg 1160 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
1-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0))
& c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) ⇒ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
|
Theorem | dp15lemh 1161 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
2-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0))
& c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) ⇒ ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
|
Theorem | dp15 1162 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305
(1982). (1)=>(5). (Contributed by NM, 1-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) ⇒ ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
|
Theorem | dp53lema 1163 |
Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM,
2-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
|
Theorem | dp53lemb 1164 |
Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM,
2-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
|
Theorem | dp53lemc 1165 |
Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM,
2-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
|
Theorem | dp53lemd 1166 |
Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
|
Theorem | dp53leme 1167 |
Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (a0 ∪ p0)) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | dp53lemf 1168 |
Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (a0 ∪ p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | dp53lemg 1169 |
Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM,
2-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | dp53 1170 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305
(1982). (5)=>(3). (Contributed by NM, 2-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | dp35lemg 1171 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
12-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | dp35lemf 1172 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
12-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (a0 ∪ p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | dp35leme 1173 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
12-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (a0 ∪ p0)) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | dp35lemd 1174 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
12-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
|
Theorem | dp35lemc 1175 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
2-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (((a0 ∩ b0) ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) |
|
Theorem | dp35lemb 1176 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
2-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1)))) = (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
|
Theorem | dp35lembb 1177 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
12-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b0 ∩ (a0 ∪ p0)) ≤ (b0 ∩ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1)))) |
|
Theorem | dp35lema 1178 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
12-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ (b1 ∪ (b0 ∩ (a0 ∪ p0))) ≤ (b1 ∪ ((a0 ∪ a1) ∩ (c0 ∪ c1))) |
|
Theorem | dp35lem0 1179 |
Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM,
12-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
|
Theorem | dp35 1180 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305
(1982). (3)=>(5). (Contributed by NM, 12-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) ⇒ ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
|
Theorem | dp34 1181 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305
(1982). (3)=>(4). (Contributed by NM, 3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ p ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
|
Theorem | dp41lema 1182 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ ((a0 ∪ b0) ∩ (a1 ∪ b1)) ≤ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1))) |
|
Theorem | dp41lemb 1183 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ c2 = ((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) |
|
Theorem | dp41lemc0 1184 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
4-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ (((a0 ∪ b0) ∪ b1) ∩ ((a0 ∪ a1) ∪ b1)) = ((a0 ∪ b1) ∪ ((a0 ∪ b0) ∩ (a1 ∪ b1))) |
|
Theorem | dp41lemc 1185 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ ((c2 ∩ ((a0 ∪ b0) ∪ b1)) ∩ ((a0 ∪ a1) ∪ b1)) ≤ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) |
|
Theorem | dp41lemd 1186 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ (c2 ∩ ((a0 ∪ b1) ∪ (c2 ∩ (c0 ∪ c1)))) = (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) |
|
Theorem | dp41leme 1187 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ (c2 ∩ ((c0 ∪ c1) ∪ (c2 ∩ (a0 ∪ b1)))) ≤ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) |
|
Theorem | dp41lemf 1188 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ ((c0 ∪ c1) ∪ ((a0 ∩ (b0 ∪ b1)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) |
|
Theorem | dp41lemg 1189 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a0 ∩ (b0 ∪ b1))))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) |
|
Theorem | dp41lemh 1190 |
Part of proof (4)=>(1) in Day/Pickering 1982. "By CP(a,b)".
(Contributed by NM, 3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a0 ∪ b0))))) ≤ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) |
|
Theorem | dp41lemj 1191 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (a0 ∩ (a2 ∪ b2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (b1 ∩ (a2 ∪ b2))))) = (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))))) |
|
Theorem | dp41lemk 1192 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ (((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b2 ∩ (a0 ∪ a2)))) ∪ ((a0 ∪ a2) ∩ ((b0 ∪ b2) ∪ (a2 ∩ (b1 ∪ b2))))) = ((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) |
|
Theorem | dp41leml 1193 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ ((c0 ∪ (b2 ∩ (a0 ∪ a2))) ∪ (c1 ∪ (a2 ∩ (b1 ∪ b2)))) = (c0 ∪ c1) |
|
Theorem | dp41lemm 1194 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ c2 ≤ (c0 ∪ c1) |
|
Theorem | dp41 1195 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305
(1982). (4)=>(1). (Contributed by NM, 3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ c2 ≤ (c0 ∪ c1) |
|
Theorem | dp32 1196 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305
(1982). (3)=>(2). (Contributed by NM, 4-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ p ≤ ((a0 ∩ (a1 ∪ (c2 ∩ (c0 ∪ c1)))) ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | dp23 1197 |
Part of theorem from Alan Day and Doug Pickering, "A note on the
Arguesian lattice identity", Studia Sci. Math. Hungar. 19:303-305
(1982). (2)=>(3). (Contributed by NM, 4-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |
|
Theorem | xdp41 1198 |
Part of proof (4)=>(1) in Day/Pickering 1982. (Contributed by NM,
3-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2))
& p2 = ((a0 ∪ b0) ∩ (a1 ∪ b1))
& p2 ≤ (a2 ∪ b2) ⇒ c2 ≤ (c0 ∪ c1) |
|
Theorem | xdp15 1199 |
Part of proof (1)=>(5) in Day/Pickering 1982. (Contributed by NM,
11-Apr-2012.)
|
d = (a2 ∪ (a0 ∩ (a1 ∪ b1)))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& e =
(b0 ∩ (a0 ∪ p0))
& c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) ⇒ ((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
|
Theorem | xdp53 1200 |
Part of proof (5)=>(3) in Day/Pickering 1982. (Contributed by NM,
11-Apr-2012.)
|
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2))
& c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2))
& c2 = ((a0 ∪ a1) ∩ (b0 ∪ b1))
& p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2))
& p =
(((a0 ∪ b0) ∩ (a1 ∪ b1)) ∩ (a2 ∪ b2)) ⇒ p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0 ∪ c1))))) |