Proof of Theorem dp15lemh
Step | Hyp | Ref
| Expression |
1 | | dp15lema.1 |
. . . . . 6
d = (a2 ∪ (a0 ∩ (a1 ∪ b1))) |
2 | | dp15lema.2 |
. . . . . 6
p0 = ((a1 ∪ b1) ∩ (a2 ∪ b2)) |
3 | | dp15lema.3 |
. . . . . 6
e = (b0 ∩ (a0 ∪ p0)) |
4 | 1, 2, 3 | dp15lemc 1156 |
. . . . 5
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) |
5 | 1, 2, 3 | dp15lemd 1157 |
. . . . 5
(((a0 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ ((a1 ∪ (a2 ∪ (a0 ∩ (a1 ∪ b1)))) ∩ (b1 ∪ b2))) = (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) |
6 | 4, 5 | lbtr 139 |
. . . 4
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) |
7 | 1, 2, 3 | dp15leme 1158 |
. . . 4
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (a0 ∩ (a1 ∪ b1))) ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) |
8 | 6, 7 | letr 137 |
. . 3
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) |
9 | 1, 2, 3 | dp15lemf 1159 |
. . 3
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
10 | 8, 9 | letr 137 |
. 2
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
11 | | dp15lemg.4 |
. . 3
c0 = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
12 | | dp15lemg.5 |
. . 3
c1 = ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
13 | 1, 2, 3, 11, 12 | dp15lemg 1160 |
. 2
(((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |
14 | 10, 13 | lbtr 139 |
1
((a0 ∪ a1) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b1)) ≤ ((c0 ∪ c1) ∪ (b1 ∩ (a0 ∪ a1))) |