Proof of Theorem dp15lemf
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . . . 5
(b0 ∩ (a0 ∪ p0)) ≤ b0 |
2 | 1 | leror 152 |
. . . 4
((b0 ∩ (a0 ∪ p0)) ∪ b2) ≤ (b0 ∪ b2) |
3 | 2 | lelan 167 |
. . 3
((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ≤ ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
4 | | leao1 162 |
. . . . . 6
(b1 ∩ (a0 ∪ a1)) ≤ (b1 ∪ b2) |
5 | 4 | mldual2i 1127 |
. . . . 5
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) = (((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) |
6 | | ancom 74 |
. . . . 5
((b1 ∪ b2) ∩ ((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) |
7 | | ancom 74 |
. . . . . 6
((b1 ∪ b2) ∩ (a1 ∪ a2)) = ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
8 | 7 | ror 71 |
. . . . 5
(((b1 ∪ b2) ∩ (a1 ∪ a2)) ∪ (b1 ∩ (a0 ∪ a1))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
9 | 5, 6, 8 | 3tr2 64 |
. . . 4
(((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
10 | 9 | bile 142 |
. . 3
(((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2)) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1))) |
11 | 3, 10 | le2or 168 |
. 2
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) ≤ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
12 | | or12 80 |
. 2
(((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) = (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |
13 | 11, 12 | lbtr 139 |
1
(((a0 ∪ a2) ∩ ((b0 ∩ (a0 ∪ p0)) ∪ b2)) ∪ (((a1 ∪ a2) ∪ (b1 ∩ (a0 ∪ a1))) ∩ (b1 ∪ b2))) ≤ (((a1 ∪ a2) ∩ (b1 ∪ b2)) ∪ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ (b1 ∩ (a0 ∪ a1)))) |