Proof of Theorem k1-3
Step | Hyp | Ref
| Expression |
1 | | k1-3.1 |
. . . . 5
x = ((x ∩ c) ∪
(x ∩ c⊥ )) |
2 | | k1-3.2 |
. . . . 5
y = ((y ∩ c) ∪
(y ∩ c⊥ )) |
3 | 1, 2 | 2or 72 |
. . . 4
(x ∪ y) = (((x ∩
c) ∪ (x ∩ c⊥ )) ∪ ((y ∩ c) ∪
(y ∩ c⊥ ))) |
4 | | or4 84 |
. . . 4
(((x ∩ c) ∪ (x
∩ c⊥ )) ∪
((y ∩ c) ∪ (y
∩ c⊥ ))) = (((x ∩ c) ∪
(y ∩ c)) ∪ ((x
∩ c⊥ ) ∪ (y ∩ c⊥ ))) |
5 | 3, 4 | ax-r2 36 |
. . 3
(x ∪ y) = (((x ∩
c) ∪ (y ∩ c))
∪ ((x ∩ c⊥ ) ∪ (y ∩ c⊥ ))) |
6 | 5 | ran 78 |
. 2
((x ∪ y) ∩ c⊥ ) = ((((x ∩ c) ∪
(y ∩ c)) ∪ ((x
∩ c⊥ ) ∪ (y ∩ c⊥ ))) ∩ c⊥ ) |
7 | | k1-3.3 |
. . . 4
((x ∩ c⊥ ) ∪ (y ∩ c⊥ ))⊥ =
((((x ∩ c⊥ ) ∪ (y ∩ c⊥ ))⊥ ∩
c) ∪ (((x ∩ c⊥ ) ∪ (y ∩ c⊥ ))⊥ ∩
c⊥ )) |
8 | | lear 161 |
. . . . 5
(x ∩ c) ≤ c |
9 | | lear 161 |
. . . . 5
(y ∩ c) ≤ c |
10 | 8, 9 | lel2or 170 |
. . . 4
((x ∩ c) ∪ (y
∩ c)) ≤ c |
11 | | lear 161 |
. . . . 5
(x ∩ c⊥ ) ≤ c⊥ |
12 | | lear 161 |
. . . . 5
(y ∩ c⊥ ) ≤ c⊥ |
13 | 11, 12 | lel2or 170 |
. . . 4
((x ∩ c⊥ ) ∪ (y ∩ c⊥ )) ≤ c⊥ |
14 | 7, 10, 13 | k1-8b 356 |
. . 3
((x ∩ c⊥ ) ∪ (y ∩ c⊥ )) = ((((x ∩ c) ∪
(y ∩ c)) ∪ ((x
∩ c⊥ ) ∪ (y ∩ c⊥ ))) ∩ c⊥ ) |
15 | 14 | ax-r1 35 |
. 2
((((x ∩ c) ∪ (y
∩ c)) ∪ ((x ∩ c⊥ ) ∪ (y ∩ c⊥ ))) ∩ c⊥ ) = ((x ∩ c⊥ ) ∪ (y ∩ c⊥ )) |
16 | 6, 15 | tr 62 |
1
((x ∪ y) ∩ c⊥ ) = ((x ∩ c⊥ ) ∪ (y ∩ c⊥ )) |