Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > k1-8b | GIF version |
Description: Second part of statement (8) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21. (Contributed by NM, 27-May-2008.) |
Ref | Expression |
---|---|
k1-8b.1 | y⊥ = ((y⊥ ∩ c) ∪ (y⊥ ∩ c⊥ )) |
k1-8b.2 | x ≤ c |
k1-8b.3 | y ≤ c⊥ |
Ref | Expression |
---|---|
k1-8b | y = ((x ∪ y) ∩ c⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | k1-8b.1 | . . . 4 y⊥ = ((y⊥ ∩ c) ∪ (y⊥ ∩ c⊥ )) | |
2 | ax-a1 30 | . . . . . 6 c = c⊥ ⊥ | |
3 | 2 | lan 77 | . . . . 5 (y⊥ ∩ c) = (y⊥ ∩ c⊥ ⊥ ) |
4 | 3 | ror 71 | . . . 4 ((y⊥ ∩ c) ∪ (y⊥ ∩ c⊥ )) = ((y⊥ ∩ c⊥ ⊥ ) ∪ (y⊥ ∩ c⊥ )) |
5 | orcom 73 | . . . 4 ((y⊥ ∩ c⊥ ⊥ ) ∪ (y⊥ ∩ c⊥ )) = ((y⊥ ∩ c⊥ ) ∪ (y⊥ ∩ c⊥ ⊥ )) | |
6 | 1, 4, 5 | 3tr 65 | . . 3 y⊥ = ((y⊥ ∩ c⊥ ) ∪ (y⊥ ∩ c⊥ ⊥ )) |
7 | k1-8b.3 | . . 3 y ≤ c⊥ | |
8 | k1-8b.2 | . . . 4 x ≤ c | |
9 | 8, 2 | lbtr 139 | . . 3 x ≤ c⊥ ⊥ |
10 | 6, 7, 9 | k1-8a 355 | . 2 y = ((y ∪ x) ∩ c⊥ ) |
11 | orcom 73 | . . 3 (y ∪ x) = (x ∪ y) | |
12 | 11 | ran 78 | . 2 ((y ∪ x) ∩ c⊥ ) = ((x ∪ y) ∩ c⊥ ) |
13 | 10, 12 | tr 62 | 1 y = ((x ∪ y) ∩ c⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: k1-3 358 |
Copyright terms: Public domain | W3C validator |