Proof of Theorem k1-4
Step | Hyp | Ref
| Expression |
1 | | oran1 91 |
. . . . 5
(x ∪ c⊥ ) = (x⊥ ∩ c)⊥ |
2 | 1 | lan 77 |
. . . 4
(x⊥ ∩ (x ∪ c⊥ )) = (x⊥ ∩ (x⊥ ∩ c)⊥ ) |
3 | 2 | cm 61 |
. . 3
(x⊥ ∩ (x⊥ ∩ c)⊥ ) = (x⊥ ∩ (x ∪ c⊥ )) |
4 | | anor3 90 |
. . 3
(x⊥ ∩ (x⊥ ∩ c)⊥ ) = (x ∪ (x⊥ ∩ c))⊥ |
5 | | k1-4.1 |
. . . 4
(x⊥ ∩ (x ∪ c⊥ )) = (((x⊥ ∩ (x ∪ c⊥ )) ∩ c) ∪ ((x⊥ ∩ (x ∪ c⊥ )) ∩ c⊥ )) |
6 | 1 | lan 77 |
. . . . . 6
((x⊥ ∩ c) ∩ (x
∪ c⊥ )) = ((x⊥ ∩ c) ∩ (x⊥ ∩ c)⊥ ) |
7 | | an32 83 |
. . . . . 6
((x⊥ ∩
(x ∪ c⊥ )) ∩ c) = ((x⊥ ∩ c) ∩ (x
∪ c⊥
)) |
8 | | dff 101 |
. . . . . 6
0 = ((x⊥ ∩
c) ∩ (x⊥ ∩ c)⊥ ) |
9 | 6, 7, 8 | 3tr1 63 |
. . . . 5
((x⊥ ∩
(x ∪ c⊥ )) ∩ c) = 0 |
10 | | an32 83 |
. . . . . 6
((x⊥ ∩
(x ∪ c⊥ )) ∩ c⊥ ) = ((x⊥ ∩ c⊥ ) ∩ (x ∪ c⊥ )) |
11 | | leao4 165 |
. . . . . . 7
(x⊥ ∩ c⊥ ) ≤ (x ∪ c⊥ ) |
12 | 11 | df2le2 136 |
. . . . . 6
((x⊥ ∩ c⊥ ) ∩ (x ∪ c⊥ )) = (x⊥ ∩ c⊥ ) |
13 | | anor3 90 |
. . . . . . 7
(x⊥ ∩ c⊥ ) = (x ∪ c)⊥ |
14 | | k1-4.2 |
. . . . . . . . 9
x ≤ c |
15 | 14 | df-le2 131 |
. . . . . . . 8
(x ∪ c) = c |
16 | 15 | ax-r4 37 |
. . . . . . 7
(x ∪ c)⊥ = c⊥ |
17 | 13, 16 | tr 62 |
. . . . . 6
(x⊥ ∩ c⊥ ) = c⊥ |
18 | 10, 12, 17 | 3tr 65 |
. . . . 5
((x⊥ ∩
(x ∪ c⊥ )) ∩ c⊥ ) = c⊥ |
19 | 9, 18 | 2or 72 |
. . . 4
(((x⊥ ∩
(x ∪ c⊥ )) ∩ c) ∪ ((x⊥ ∩ (x ∪ c⊥ )) ∩ c⊥ )) = (0 ∪ c⊥ ) |
20 | | or0r 103 |
. . . 4
(0 ∪ c⊥ ) =
c⊥ |
21 | 5, 19, 20 | 3tr 65 |
. . 3
(x⊥ ∩ (x ∪ c⊥ )) = c⊥ |
22 | 3, 4, 21 | 3tr2 64 |
. 2
(x ∪ (x⊥ ∩ c))⊥ = c⊥ |
23 | 22 | con1 66 |
1
(x ∪ (x⊥ ∩ c)) = c |