| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud5lem0b | GIF version | ||
| Description: Introduce →5 to the right. (Contributed by NM, 23-Nov-1997.) |
| Ref | Expression |
|---|---|
| ud5lem0a.1 | a = b |
| Ref | Expression |
|---|---|
| ud5lem0b | (a →5 c) = (b →5 c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud5lem0a.1 | . . . . 5 a = b | |
| 2 | 1 | ran 78 | . . . 4 (a ∩ c) = (b ∩ c) |
| 3 | 1 | ax-r4 37 | . . . . 5 a⊥ = b⊥ |
| 4 | 3 | ran 78 | . . . 4 (a⊥ ∩ c) = (b⊥ ∩ c) |
| 5 | 2, 4 | 2or 72 | . . 3 ((a ∩ c) ∪ (a⊥ ∩ c)) = ((b ∩ c) ∪ (b⊥ ∩ c)) |
| 6 | 3 | ran 78 | . . 3 (a⊥ ∩ c⊥ ) = (b⊥ ∩ c⊥ ) |
| 7 | 5, 6 | 2or 72 | . 2 (((a ∩ c) ∪ (a⊥ ∩ c)) ∪ (a⊥ ∩ c⊥ )) = (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ (b⊥ ∩ c⊥ )) |
| 8 | df-i5 48 | . 2 (a →5 c) = (((a ∩ c) ∪ (a⊥ ∩ c)) ∪ (a⊥ ∩ c⊥ )) | |
| 9 | df-i5 48 | . 2 (b →5 c) = (((b ∩ c) ∪ (b⊥ ∩ c)) ∪ (b⊥ ∩ c⊥ )) | |
| 10 | 7, 8, 9 | 3tr1 63 | 1 (a →5 c) = (b →5 c) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →5 wi5 16 |
| This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i5 48 |
| This theorem is referenced by: ud5 599 |
| Copyright terms: Public domain | W3C validator |