Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i1i2 | GIF version |
Description: Correspondence between Sasaki and Dishkant conditionals. (Contributed by NM, 25-Nov-1998.) |
Ref | Expression |
---|---|
i1i2 | (a →1 b) = (b⊥ →2 a⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
2 | ax-a1 30 | . . . . 5 b = b⊥ ⊥ | |
3 | 1, 2 | 2an 79 | . . . 4 (a ∩ b) = (a⊥ ⊥ ∩ b⊥ ⊥ ) |
4 | ancom 74 | . . . 4 (a⊥ ⊥ ∩ b⊥ ⊥ ) = (b⊥ ⊥ ∩ a⊥ ⊥ ) | |
5 | 3, 4 | ax-r2 36 | . . 3 (a ∩ b) = (b⊥ ⊥ ∩ a⊥ ⊥ ) |
6 | 5 | lor 70 | . 2 (a⊥ ∪ (a ∩ b)) = (a⊥ ∪ (b⊥ ⊥ ∩ a⊥ ⊥ )) |
7 | df-i1 44 | . 2 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
8 | df-i2 45 | . 2 (b⊥ →2 a⊥ ) = (a⊥ ∪ (b⊥ ⊥ ∩ a⊥ ⊥ )) | |
9 | 6, 7, 8 | 3tr1 63 | 1 (a →1 b) = (b⊥ →2 a⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i1 44 df-i2 45 |
This theorem is referenced by: i2i1 267 i1i2con1 268 i1i2con2 269 nom41 326 1oai1 821 2oath1i1 827 oal1 1000 |
Copyright terms: Public domain | W3C validator |