Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-i5 | GIF version |
Description: Define relevance conditional. (Contributed by NM, 23-Nov-1997.) |
Ref | Expression |
---|---|
df-i5 | (a →5 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wi5 16 | . 2 term (a →5 b) |
4 | 1, 2 | wa 7 | . . . 4 term (a ∩ b) |
5 | 1 | wn 4 | . . . . 5 term a⊥ |
6 | 5, 2 | wa 7 | . . . 4 term (a⊥ ∩ b) |
7 | 4, 6 | wo 6 | . . 3 term ((a ∩ b) ∪ (a⊥ ∩ b)) |
8 | 2 | wn 4 | . . . 4 term b⊥ |
9 | 5, 8 | wa 7 | . . 3 term (a⊥ ∩ b⊥ ) |
10 | 7, 9 | wo 6 | . 2 term (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
11 | 3, 10 | wb 1 | 1 wff (a →5 b) = (((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
Colors of variables: term |
This definition is referenced by: ud5lem0a 264 ud5lem0b 265 i5con 272 ud5lem0c 281 nom15 312 i5lei1 347 i5lei2 348 i5lei3 349 i5lei4 350 ud5lem1a 586 ud5lem1b 587 ud5lem1 589 ud5lem2 590 ud5lem3a 591 ud5lem3 594 u5lemaa 604 u5lemana 609 u5lemab 614 u5lemanb 619 u5lemoa 624 u5lemona 629 u5lemob 634 u5lemonb 639 u5lemc1 684 u5lemc1b 685 u5lemc2 690 u5lemc4 705 u5lemle2 719 u5lembi 725 u5lem5 765 u5lem6 769 u24lem 770 lem3.3.7i5e1 1072 wdwom 1106 |
Copyright terms: Public domain | W3C validator |