Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  vneulem GIF version

Theorem vneulem 1145
 Description: von Neumann's modular law lemma. Lemma 9, Kalmbach p. 96
Hypothesis
Ref Expression
vneulem.1 ((ab) ∩ (cd)) = 0
Assertion
Ref Expression
vneulem ((ac) ∩ (bd)) = ((ab) ∪ (cd))

Proof of Theorem vneulem
StepHypRef Expression
1 vneulem.1 . . 3 ((ab) ∩ (cd)) = 0
21vneulem15 1143 . 2 ((ac) ∩ (bd)) = ((((ab) ∪ c) ∩ ((ac) ∪ d)) ∩ (((ab) ∪ d) ∩ ((bc) ∪ d)))
31vneulem16 1144 . 2 ((((ab) ∪ c) ∩ ((ac) ∪ d)) ∩ (((ab) ∪ d) ∩ ((bc) ∪ d))) = ((ab) ∪ (cd))
42, 3tr 62 1 ((ac) ∩ (bd)) = ((ab) ∪ (cd))
 Colors of variables: term Syntax hints:   = wb 1   ∪ wo 6   ∩ wa 7  0wf 9 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1120 This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator