Proof of Theorem vneulemexp
Step | Hyp | Ref
| Expression |
1 | | ax-a2 31 |
. . . . . . 7
(a ∪ b) = (b ∪
a) |
2 | 1 | ax-r5 38 |
. . . . . 6
((a ∪ b) ∪ c) =
((b ∪ a) ∪ c) |
3 | | or32 82 |
. . . . . 6
((a ∪ c) ∪ d) =
((a ∪ d) ∪ c) |
4 | 2, 3 | 2an 79 |
. . . . 5
(((a ∪ b) ∪ c)
∩ ((a ∪ c) ∪ d)) =
(((b ∪ a) ∪ c)
∩ ((a ∪ d) ∪ c)) |
5 | | orcom 73 |
. . . . . . . . . . . 12
(b ∪ a) = (a ∪
b) |
6 | 5 | ror 71 |
. . . . . . . . . . 11
((b ∪ a) ∪ c) =
((a ∪ b) ∪ c) |
7 | | or32 82 |
. . . . . . . . . . 11
((a ∪ b) ∪ c) =
((a ∪ c) ∪ b) |
8 | 6, 7 | tr 62 |
. . . . . . . . . 10
((b ∪ a) ∪ c) =
((a ∪ c) ∪ b) |
9 | | or32 82 |
. . . . . . . . . 10
((a ∪ d) ∪ c) =
((a ∪ c) ∪ d) |
10 | 8, 9 | 2an 79 |
. . . . . . . . 9
(((b ∪ a) ∪ c)
∩ ((a ∪ d) ∪ c)) =
(((a ∪ c) ∪ b)
∩ ((a ∪ c) ∪ d)) |
11 | | ancom 74 |
. . . . . . . . . 10
(((a ∪ c) ∪ b)
∩ ((a ∪ c) ∪ d)) =
(((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)) |
12 | | ml 1123 |
. . . . . . . . . . 11
((a ∪ c) ∪ (d
∩ ((a ∪ c) ∪ b))) =
(((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)) |
13 | 12 | cm 61 |
. . . . . . . . . 10
(((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)) =
((a ∪ c) ∪ (d
∩ ((a ∪ c) ∪ b))) |
14 | | ancom 74 |
. . . . . . . . . . 11
(d ∩ ((a ∪ c) ∪
b)) = (((a ∪ c) ∪
b) ∩ d) |
15 | 14 | lor 70 |
. . . . . . . . . 10
((a ∪ c) ∪ (d
∩ ((a ∪ c) ∪ b))) =
((a ∪ c) ∪ (((a
∪ c) ∪ b) ∩ d)) |
16 | 11, 13, 15 | 3tr 65 |
. . . . . . . . 9
(((a ∪ c) ∪ b)
∩ ((a ∪ c) ∪ d)) =
((a ∪ c) ∪ (((a
∪ c) ∪ b) ∩ d)) |
17 | 10, 16 | ax-r2 36 |
. . . . . . . 8
(((b ∪ a) ∪ c)
∩ ((a ∪ d) ∪ c)) =
((a ∪ c) ∪ (((a
∪ c) ∪ b) ∩ d)) |
18 | | leor 159 |
. . . . . . . . 9
(a ∪ c) ≤ ((d
∩ b) ∪ (a ∪ c)) |
19 | | or32 82 |
. . . . . . . . . . . 12
((a ∪ c) ∪ b) =
((a ∪ b) ∪ c) |
20 | 19 | ran 78 |
. . . . . . . . . . 11
(((a ∪ c) ∪ b)
∩ d) = (((a ∪ b) ∪
c) ∩ d) |
21 | | leor 159 |
. . . . . . . . . . . . . . 15
d ≤ (c ∪ d) |
22 | | leid 148 |
. . . . . . . . . . . . . . 15
d ≤ d |
23 | 21, 22 | ler2an 173 |
. . . . . . . . . . . . . 14
d ≤ ((c ∪ d) ∩
d) |
24 | | lear 161 |
. . . . . . . . . . . . . 14
((c ∪ d) ∩ d) ≤
d |
25 | 23, 24 | lebi 145 |
. . . . . . . . . . . . 13
d = ((c ∪ d) ∩
d) |
26 | 25 | lan 77 |
. . . . . . . . . . . 12
(((a ∪ b) ∪ c)
∩ d) = (((a ∪ b) ∪
c) ∩ ((c ∪ d) ∩
d)) |
27 | | anass 76 |
. . . . . . . . . . . . . 14
((((a ∪ b) ∪ c)
∩ (c ∪ d)) ∩ d) =
(((a ∪ b) ∪ c)
∩ ((c ∪ d) ∩ d)) |
28 | 27 | cm 61 |
. . . . . . . . . . . . 13
(((a ∪ b) ∪ c)
∩ ((c ∪ d) ∩ d)) =
((((a ∪ b) ∪ c)
∩ (c ∪ d)) ∩ d) |
29 | | ax-a2 31 |
. . . . . . . . . . . . . . . 16
((a ∪ b) ∪ c) =
(c ∪ (a ∪ b)) |
30 | 29 | ran 78 |
. . . . . . . . . . . . . . 15
(((a ∪ b) ∪ c)
∩ (c ∪ d)) = ((c ∪
(a ∪ b)) ∩ (c
∪ d)) |
31 | | ml 1123 |
. . . . . . . . . . . . . . . 16
(c ∪ ((a ∪ b) ∩
(c ∪ d))) = ((c ∪
(a ∪ b)) ∩ (c
∪ d)) |
32 | 31 | cm 61 |
. . . . . . . . . . . . . . 15
((c ∪ (a ∪ b))
∩ (c ∪ d)) = (c ∪
((a ∪ b) ∩ (c
∪ d))) |
33 | | orcom 73 |
. . . . . . . . . . . . . . 15
(c ∪ ((a ∪ b) ∩
(c ∪ d))) = (((a
∪ b) ∩ (c ∪ d))
∪ c) |
34 | 30, 32, 33 | 3tr 65 |
. . . . . . . . . . . . . 14
(((a ∪ b) ∪ c)
∩ (c ∪ d)) = (((a ∪
b) ∩ (c ∪ d))
∪ c) |
35 | 34 | ran 78 |
. . . . . . . . . . . . 13
((((a ∪ b) ∪ c)
∩ (c ∪ d)) ∩ d) =
((((a ∪ b) ∩ (c
∪ d)) ∪ c) ∩ d) |
36 | 28, 35 | tr 62 |
. . . . . . . . . . . 12
(((a ∪ b) ∪ c)
∩ ((c ∪ d) ∩ d)) =
((((a ∪ b) ∩ (c
∪ d)) ∪ c) ∩ d) |
37 | | vneulemexp.1 |
. . . . . . . . . . . . . . 15
((a ∪ b) ∩ (c
∪ d)) = 0 |
38 | 37 | ror 71 |
. . . . . . . . . . . . . 14
(((a ∪ b) ∩ (c
∪ d)) ∪ c) = (0 ∪ c) |
39 | | or0r 103 |
. . . . . . . . . . . . . 14
(0 ∪ c) = c |
40 | 38, 39 | tr 62 |
. . . . . . . . . . . . 13
(((a ∪ b) ∩ (c
∪ d)) ∪ c) = c |
41 | 40 | ran 78 |
. . . . . . . . . . . 12
((((a ∪ b) ∩ (c
∪ d)) ∪ c) ∩ d) =
(c ∩ d) |
42 | 26, 36, 41 | 3tr 65 |
. . . . . . . . . . 11
(((a ∪ b) ∪ c)
∩ d) = (c ∩ d) |
43 | 20, 42 | tr 62 |
. . . . . . . . . 10
(((a ∪ c) ∪ b)
∩ d) = (c ∩ d) |
44 | | leao3 164 |
. . . . . . . . . . 11
(c ∩ d) ≤ (a ∪
c) |
45 | 44 | lerr 150 |
. . . . . . . . . 10
(c ∩ d) ≤ ((d
∩ b) ∪ (a ∪ c)) |
46 | 43, 45 | bltr 138 |
. . . . . . . . 9
(((a ∪ c) ∪ b)
∩ d) ≤ ((d ∩ b) ∪
(a ∪ c)) |
47 | 18, 46 | lel2or 170 |
. . . . . . . 8
((a ∪ c) ∪ (((a
∪ c) ∪ b) ∩ d))
≤ ((d ∩ b) ∪ (a
∪ c)) |
48 | 17, 47 | bltr 138 |
. . . . . . 7
(((b ∪ a) ∪ c)
∩ ((a ∪ d) ∪ c))
≤ ((d ∩ b) ∪ (a
∪ c)) |
49 | | leao2 163 |
. . . . . . . . . 10
(d ∩ b) ≤ (b ∪
a) |
50 | 49 | ler 149 |
. . . . . . . . 9
(d ∩ b) ≤ ((b
∪ a) ∪ c) |
51 | | leor 159 |
. . . . . . . . . 10
a ≤ (b ∪ a) |
52 | 51 | leror 152 |
. . . . . . . . 9
(a ∪ c) ≤ ((b
∪ a) ∪ c) |
53 | 50, 52 | lel2or 170 |
. . . . . . . 8
((d ∩ b) ∪ (a
∪ c)) ≤ ((b ∪ a) ∪
c) |
54 | | leao3 164 |
. . . . . . . . . 10
(d ∩ b) ≤ (a ∪
d) |
55 | 54 | ler 149 |
. . . . . . . . 9
(d ∩ b) ≤ ((a
∪ d) ∪ c) |
56 | | leo 158 |
. . . . . . . . . 10
a ≤ (a ∪ d) |
57 | 56 | leror 152 |
. . . . . . . . 9
(a ∪ c) ≤ ((a
∪ d) ∪ c) |
58 | 55, 57 | lel2or 170 |
. . . . . . . 8
((d ∩ b) ∪ (a
∪ c)) ≤ ((a ∪ d) ∪
c) |
59 | 53, 58 | ler2an 173 |
. . . . . . 7
((d ∩ b) ∪ (a
∪ c)) ≤ (((b ∪ a) ∪
c) ∩ ((a ∪ d) ∪
c)) |
60 | 48, 59 | lebi 145 |
. . . . . 6
(((b ∪ a) ∪ c)
∩ ((a ∪ d) ∪ c)) =
((d ∩ b) ∪ (a
∪ c)) |
61 | | leao1 162 |
. . . . . . . . . . 11
(d ∩ b) ≤ (d ∪
c) |
62 | 49, 61 | ler2an 173 |
. . . . . . . . . 10
(d ∩ b) ≤ ((b
∪ a) ∩ (d ∪ c)) |
63 | | orcom 73 |
. . . . . . . . . . . 12
(d ∪ c) = (c ∪
d) |
64 | 5, 63 | 2an 79 |
. . . . . . . . . . 11
((b ∪ a) ∩ (d
∪ c)) = ((a ∪ b) ∩
(c ∪ d)) |
65 | 64, 37 | tr 62 |
. . . . . . . . . 10
((b ∪ a) ∩ (d
∪ c)) = 0 |
66 | 62, 65 | lbtr 139 |
. . . . . . . . 9
(d ∩ b) ≤ 0 |
67 | | le0 147 |
. . . . . . . . 9
0 ≤ (d ∩ b) |
68 | 66, 67 | lebi 145 |
. . . . . . . 8
(d ∩ b) = 0 |
69 | 68 | ror 71 |
. . . . . . 7
((d ∩ b) ∪ (a
∪ c)) = (0 ∪ (a ∪ c)) |
70 | | or0r 103 |
. . . . . . 7
(0 ∪ (a ∪ c)) = (a ∪
c) |
71 | 69, 70 | tr 62 |
. . . . . 6
((d ∩ b) ∪ (a
∪ c)) = (a ∪ c) |
72 | 60, 71 | tr 62 |
. . . . 5
(((b ∪ a) ∪ c)
∩ ((a ∪ d) ∪ c)) =
(a ∪ c) |
73 | 4, 72 | tr 62 |
. . . 4
(((a ∪ b) ∪ c)
∩ ((a ∪ c) ∪ d)) =
(a ∪ c) |
74 | | orcom 73 |
. . . . . . . . . . 11
(a ∪ b) = (b ∪
a) |
75 | 74 | ror 71 |
. . . . . . . . . 10
((a ∪ b) ∪ d) =
((b ∪ a) ∪ d) |
76 | | or32 82 |
. . . . . . . . . 10
((b ∪ a) ∪ d) =
((b ∪ d) ∪ a) |
77 | 75, 76 | tr 62 |
. . . . . . . . 9
((a ∪ b) ∪ d) =
((b ∪ d) ∪ a) |
78 | | or32 82 |
. . . . . . . . 9
((b ∪ c) ∪ d) =
((b ∪ d) ∪ c) |
79 | 77, 78 | 2an 79 |
. . . . . . . 8
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d)) =
(((b ∪ d) ∪ a)
∩ ((b ∪ d) ∪ c)) |
80 | | ancom 74 |
. . . . . . . . 9
(((b ∪ d) ∪ a)
∩ ((b ∪ d) ∪ c)) =
(((b ∪ d) ∪ c)
∩ ((b ∪ d) ∪ a)) |
81 | | ml 1123 |
. . . . . . . . . 10
((b ∪ d) ∪ (c
∩ ((b ∪ d) ∪ a))) =
(((b ∪ d) ∪ c)
∩ ((b ∪ d) ∪ a)) |
82 | 81 | cm 61 |
. . . . . . . . 9
(((b ∪ d) ∪ c)
∩ ((b ∪ d) ∪ a)) =
((b ∪ d) ∪ (c
∩ ((b ∪ d) ∪ a))) |
83 | | ancom 74 |
. . . . . . . . . 10
(c ∩ ((b ∪ d) ∪
a)) = (((b ∪ d) ∪
a) ∩ c) |
84 | 83 | lor 70 |
. . . . . . . . 9
((b ∪ d) ∪ (c
∩ ((b ∪ d) ∪ a))) =
((b ∪ d) ∪ (((b
∪ d) ∪ a) ∩ c)) |
85 | 80, 82, 84 | 3tr 65 |
. . . . . . . 8
(((b ∪ d) ∪ a)
∩ ((b ∪ d) ∪ c)) =
((b ∪ d) ∪ (((b
∪ d) ∪ a) ∩ c)) |
86 | 79, 85 | ax-r2 36 |
. . . . . . 7
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d)) =
((b ∪ d) ∪ (((b
∪ d) ∪ a) ∩ c)) |
87 | | leor 159 |
. . . . . . . 8
(b ∪ d) ≤ ((c
∩ a) ∪ (b ∪ d)) |
88 | | or32 82 |
. . . . . . . . . . 11
((b ∪ d) ∪ a) =
((b ∪ a) ∪ d) |
89 | 88 | ran 78 |
. . . . . . . . . 10
(((b ∪ d) ∪ a)
∩ c) = (((b ∪ a) ∪
d) ∩ c) |
90 | | leor 159 |
. . . . . . . . . . . . . 14
c ≤ (d ∪ c) |
91 | | leid 148 |
. . . . . . . . . . . . . 14
c ≤ c |
92 | 90, 91 | ler2an 173 |
. . . . . . . . . . . . 13
c ≤ ((d ∪ c) ∩
c) |
93 | | lear 161 |
. . . . . . . . . . . . 13
((d ∪ c) ∩ c) ≤
c |
94 | 92, 93 | lebi 145 |
. . . . . . . . . . . 12
c = ((d ∪ c) ∩
c) |
95 | 94 | lan 77 |
. . . . . . . . . . 11
(((b ∪ a) ∪ d)
∩ c) = (((b ∪ a) ∪
d) ∩ ((d ∪ c) ∩
c)) |
96 | | anass 76 |
. . . . . . . . . . . . 13
((((b ∪ a) ∪ d)
∩ (d ∪ c)) ∩ c) =
(((b ∪ a) ∪ d)
∩ ((d ∪ c) ∩ c)) |
97 | 96 | cm 61 |
. . . . . . . . . . . 12
(((b ∪ a) ∪ d)
∩ ((d ∪ c) ∩ c)) =
((((b ∪ a) ∪ d)
∩ (d ∪ c)) ∩ c) |
98 | | ax-a2 31 |
. . . . . . . . . . . . . . 15
((b ∪ a) ∪ d) =
(d ∪ (b ∪ a)) |
99 | 98 | ran 78 |
. . . . . . . . . . . . . 14
(((b ∪ a) ∪ d)
∩ (d ∪ c)) = ((d ∪
(b ∪ a)) ∩ (d
∪ c)) |
100 | | ml 1123 |
. . . . . . . . . . . . . . 15
(d ∪ ((b ∪ a) ∩
(d ∪ c))) = ((d ∪
(b ∪ a)) ∩ (d
∪ c)) |
101 | 100 | cm 61 |
. . . . . . . . . . . . . 14
((d ∪ (b ∪ a))
∩ (d ∪ c)) = (d ∪
((b ∪ a) ∩ (d
∪ c))) |
102 | | orcom 73 |
. . . . . . . . . . . . . 14
(d ∪ ((b ∪ a) ∩
(d ∪ c))) = (((b
∪ a) ∩ (d ∪ c))
∪ d) |
103 | 99, 101, 102 | 3tr 65 |
. . . . . . . . . . . . 13
(((b ∪ a) ∪ d)
∩ (d ∪ c)) = (((b ∪
a) ∩ (d ∪ c))
∪ d) |
104 | 103 | ran 78 |
. . . . . . . . . . . 12
((((b ∪ a) ∪ d)
∩ (d ∪ c)) ∩ c) =
((((b ∪ a) ∩ (d
∪ c)) ∪ d) ∩ c) |
105 | 97, 104 | tr 62 |
. . . . . . . . . . 11
(((b ∪ a) ∪ d)
∩ ((d ∪ c) ∩ c)) =
((((b ∪ a) ∩ (d
∪ c)) ∪ d) ∩ c) |
106 | 65 | ror 71 |
. . . . . . . . . . . . 13
(((b ∪ a) ∩ (d
∪ c)) ∪ d) = (0 ∪ d) |
107 | | or0r 103 |
. . . . . . . . . . . . 13
(0 ∪ d) = d |
108 | 106, 107 | tr 62 |
. . . . . . . . . . . 12
(((b ∪ a) ∩ (d
∪ c)) ∪ d) = d |
109 | 108 | ran 78 |
. . . . . . . . . . 11
((((b ∪ a) ∩ (d
∪ c)) ∪ d) ∩ c) =
(d ∩ c) |
110 | 95, 105, 109 | 3tr 65 |
. . . . . . . . . 10
(((b ∪ a) ∪ d)
∩ c) = (d ∩ c) |
111 | 89, 110 | tr 62 |
. . . . . . . . 9
(((b ∪ d) ∪ a)
∩ c) = (d ∩ c) |
112 | | leao3 164 |
. . . . . . . . . 10
(d ∩ c) ≤ (b ∪
d) |
113 | 112 | lerr 150 |
. . . . . . . . 9
(d ∩ c) ≤ ((c
∩ a) ∪ (b ∪ d)) |
114 | 111, 113 | bltr 138 |
. . . . . . . 8
(((b ∪ d) ∪ a)
∩ c) ≤ ((c ∩ a) ∪
(b ∪ d)) |
115 | 87, 114 | lel2or 170 |
. . . . . . 7
((b ∪ d) ∪ (((b
∪ d) ∪ a) ∩ c))
≤ ((c ∩ a) ∪ (b
∪ d)) |
116 | 86, 115 | bltr 138 |
. . . . . 6
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d))
≤ ((c ∩ a) ∪ (b
∪ d)) |
117 | | leao2 163 |
. . . . . . . . 9
(c ∩ a) ≤ (a ∪
b) |
118 | 117 | ler 149 |
. . . . . . . 8
(c ∩ a) ≤ ((a
∪ b) ∪ d) |
119 | | leor 159 |
. . . . . . . . 9
b ≤ (a ∪ b) |
120 | 119 | leror 152 |
. . . . . . . 8
(b ∪ d) ≤ ((a
∪ b) ∪ d) |
121 | 118, 120 | lel2or 170 |
. . . . . . 7
((c ∩ a) ∪ (b
∪ d)) ≤ ((a ∪ b) ∪
d) |
122 | | leao3 164 |
. . . . . . . . 9
(c ∩ a) ≤ (b ∪
c) |
123 | 122 | ler 149 |
. . . . . . . 8
(c ∩ a) ≤ ((b
∪ c) ∪ d) |
124 | | leo 158 |
. . . . . . . . 9
b ≤ (b ∪ c) |
125 | 124 | leror 152 |
. . . . . . . 8
(b ∪ d) ≤ ((b
∪ c) ∪ d) |
126 | 123, 125 | lel2or 170 |
. . . . . . 7
((c ∩ a) ∪ (b
∪ d)) ≤ ((b ∪ c) ∪
d) |
127 | 121, 126 | ler2an 173 |
. . . . . 6
((c ∩ a) ∪ (b
∪ d)) ≤ (((a ∪ b) ∪
d) ∩ ((b ∪ c) ∪
d)) |
128 | 116, 127 | lebi 145 |
. . . . 5
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d)) =
((c ∩ a) ∪ (b
∪ d)) |
129 | | leao1 162 |
. . . . . . . . . 10
(c ∩ a) ≤ (c ∪
d) |
130 | 117, 129 | ler2an 173 |
. . . . . . . . 9
(c ∩ a) ≤ ((a
∪ b) ∩ (c ∪ d)) |
131 | 130, 37 | lbtr 139 |
. . . . . . . 8
(c ∩ a) ≤ 0 |
132 | | le0 147 |
. . . . . . . 8
0 ≤ (c ∩ a) |
133 | 131, 132 | lebi 145 |
. . . . . . 7
(c ∩ a) = 0 |
134 | 133 | ror 71 |
. . . . . 6
((c ∩ a) ∪ (b
∪ d)) = (0 ∪ (b ∪ d)) |
135 | | or0r 103 |
. . . . . 6
(0 ∪ (b ∪ d)) = (b ∪
d) |
136 | 134, 135 | tr 62 |
. . . . 5
((c ∩ a) ∪ (b
∪ d)) = (b ∪ d) |
137 | 128, 136 | tr 62 |
. . . 4
(((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d)) =
(b ∪ d) |
138 | 73, 137 | 2an 79 |
. . 3
((((a ∪ b) ∪ c)
∩ ((a ∪ c) ∪ d))
∩ (((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d))) =
((a ∪ c) ∩ (b
∪ d)) |
139 | 138 | cm 61 |
. 2
((a ∪ c) ∩ (b
∪ d)) = ((((a ∪ b) ∪
c) ∩ ((a ∪ c) ∪
d)) ∩ (((a ∪ b) ∪
d) ∩ ((b ∪ c) ∪
d))) |
140 | | ancom 74 |
. . 3
((((a ∪ b) ∪ c)
∩ ((a ∪ c) ∪ d))
∩ (((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d))) =
((((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d))
∩ (((a ∪ b) ∪ c)
∩ ((a ∪ c) ∪ d))) |
141 | | an4 86 |
. . . 4
((((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d))
∩ (((a ∪ b) ∪ c)
∩ ((a ∪ c) ∪ d))) =
((((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ c))
∩ (((b ∪ c) ∪ d)
∩ ((a ∪ c) ∪ d))) |
142 | | ancom 74 |
. . . . . . 7
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ c)) =
(((a ∪ b) ∪ c)
∩ ((a ∪ b) ∪ d)) |
143 | | ancom 74 |
. . . . . . . 8
(((a ∪ b) ∪ c)
∩ ((a ∪ b) ∪ d)) =
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ c)) |
144 | | ml 1123 |
. . . . . . . . 9
((a ∪ b) ∪ (d
∩ ((a ∪ b) ∪ c))) =
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ c)) |
145 | 144 | cm 61 |
. . . . . . . 8
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ c)) =
((a ∪ b) ∪ (d
∩ ((a ∪ b) ∪ c))) |
146 | | ancom 74 |
. . . . . . . . 9
(d ∩ ((a ∪ b) ∪
c)) = (((a ∪ b) ∪
c) ∩ d) |
147 | 146 | lor 70 |
. . . . . . . 8
((a ∪ b) ∪ (d
∩ ((a ∪ b) ∪ c))) =
((a ∪ b) ∪ (((a
∪ b) ∪ c) ∩ d)) |
148 | 143, 145,
147 | 3tr 65 |
. . . . . . 7
(((a ∪ b) ∪ c)
∩ ((a ∪ b) ∪ d)) =
((a ∪ b) ∪ (((a
∪ b) ∪ c) ∩ d)) |
149 | 142, 148 | ax-r2 36 |
. . . . . 6
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ c)) =
((a ∪ b) ∪ (((a
∪ b) ∪ c) ∩ d)) |
150 | | orcom 73 |
. . . . . 6
((a ∪ b) ∪ (((a
∪ b) ∪ c) ∩ d)) =
((((a ∪ b) ∪ c)
∩ d) ∪ (a ∪ b)) |
151 | 42 | ror 71 |
. . . . . 6
((((a ∪ b) ∪ c)
∩ d) ∪ (a ∪ b)) =
((c ∩ d) ∪ (a
∪ b)) |
152 | 149, 150,
151 | 3tr 65 |
. . . . 5
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ c)) =
((c ∩ d) ∪ (a
∪ b)) |
153 | | ax-a3 32 |
. . . . . . . 8
((b ∪ c) ∪ d) =
(b ∪ (c ∪ d)) |
154 | | orcom 73 |
. . . . . . . 8
(b ∪ (c ∪ d)) =
((c ∪ d) ∪ b) |
155 | 153, 154 | tr 62 |
. . . . . . 7
((b ∪ c) ∪ d) =
((c ∪ d) ∪ b) |
156 | | ax-a2 31 |
. . . . . . . . 9
(a ∪ c) = (c ∪
a) |
157 | 156 | ror 71 |
. . . . . . . 8
((a ∪ c) ∪ d) =
((c ∪ a) ∪ d) |
158 | | or32 82 |
. . . . . . . 8
((c ∪ a) ∪ d) =
((c ∪ d) ∪ a) |
159 | 157, 158 | tr 62 |
. . . . . . 7
((a ∪ c) ∪ d) =
((c ∪ d) ∪ a) |
160 | 155, 159 | 2an 79 |
. . . . . 6
(((b ∪ c) ∪ d)
∩ ((a ∪ c) ∪ d)) =
(((c ∪ d) ∪ b)
∩ ((c ∪ d) ∪ a)) |
161 | | ancom 74 |
. . . . . . . 8
(((c ∪ d) ∪ b)
∩ ((c ∪ d) ∪ a)) =
(((c ∪ d) ∪ a)
∩ ((c ∪ d) ∪ b)) |
162 | | ancom 74 |
. . . . . . . . 9
(((c ∪ d) ∪ a)
∩ ((c ∪ d) ∪ b)) =
(((c ∪ d) ∪ b)
∩ ((c ∪ d) ∪ a)) |
163 | | ml 1123 |
. . . . . . . . . 10
((c ∪ d) ∪ (b
∩ ((c ∪ d) ∪ a))) =
(((c ∪ d) ∪ b)
∩ ((c ∪ d) ∪ a)) |
164 | 163 | cm 61 |
. . . . . . . . 9
(((c ∪ d) ∪ b)
∩ ((c ∪ d) ∪ a)) =
((c ∪ d) ∪ (b
∩ ((c ∪ d) ∪ a))) |
165 | | ancom 74 |
. . . . . . . . . 10
(b ∩ ((c ∪ d) ∪
a)) = (((c ∪ d) ∪
a) ∩ b) |
166 | 165 | lor 70 |
. . . . . . . . 9
((c ∪ d) ∪ (b
∩ ((c ∪ d) ∪ a))) =
((c ∪ d) ∪ (((c
∪ d) ∪ a) ∩ b)) |
167 | 162, 164,
166 | 3tr 65 |
. . . . . . . 8
(((c ∪ d) ∪ a)
∩ ((c ∪ d) ∪ b)) =
((c ∪ d) ∪ (((c
∪ d) ∪ a) ∩ b)) |
168 | 161, 167 | ax-r2 36 |
. . . . . . 7
(((c ∪ d) ∪ b)
∩ ((c ∪ d) ∪ a)) =
((c ∪ d) ∪ (((c
∪ d) ∪ a) ∩ b)) |
169 | | orcom 73 |
. . . . . . 7
((c ∪ d) ∪ (((c
∪ d) ∪ a) ∩ b)) =
((((c ∪ d) ∪ a)
∩ b) ∪ (c ∪ d)) |
170 | | leid 148 |
. . . . . . . . . . . 12
b ≤ b |
171 | 119, 170 | ler2an 173 |
. . . . . . . . . . 11
b ≤ ((a ∪ b) ∩
b) |
172 | | lear 161 |
. . . . . . . . . . 11
((a ∪ b) ∩ b) ≤
b |
173 | 171, 172 | lebi 145 |
. . . . . . . . . 10
b = ((a ∪ b) ∩
b) |
174 | 173 | lan 77 |
. . . . . . . . 9
(((c ∪ d) ∪ a)
∩ b) = (((c ∪ d) ∪
a) ∩ ((a ∪ b) ∩
b)) |
175 | | anass 76 |
. . . . . . . . . . 11
((((c ∪ d) ∪ a)
∩ (a ∪ b)) ∩ b) =
(((c ∪ d) ∪ a)
∩ ((a ∪ b) ∩ b)) |
176 | 175 | cm 61 |
. . . . . . . . . 10
(((c ∪ d) ∪ a)
∩ ((a ∪ b) ∩ b)) =
((((c ∪ d) ∪ a)
∩ (a ∪ b)) ∩ b) |
177 | | ax-a2 31 |
. . . . . . . . . . . . 13
((c ∪ d) ∪ a) =
(a ∪ (c ∪ d)) |
178 | 177 | ran 78 |
. . . . . . . . . . . 12
(((c ∪ d) ∪ a)
∩ (a ∪ b)) = ((a ∪
(c ∪ d)) ∩ (a
∪ b)) |
179 | | ml 1123 |
. . . . . . . . . . . . 13
(a ∪ ((c ∪ d) ∩
(a ∪ b))) = ((a ∪
(c ∪ d)) ∩ (a
∪ b)) |
180 | 179 | cm 61 |
. . . . . . . . . . . 12
((a ∪ (c ∪ d))
∩ (a ∪ b)) = (a ∪
((c ∪ d) ∩ (a
∪ b))) |
181 | | orcom 73 |
. . . . . . . . . . . 12
(a ∪ ((c ∪ d) ∩
(a ∪ b))) = (((c
∪ d) ∩ (a ∪ b))
∪ a) |
182 | 178, 180,
181 | 3tr 65 |
. . . . . . . . . . 11
(((c ∪ d) ∪ a)
∩ (a ∪ b)) = (((c ∪
d) ∩ (a ∪ b))
∪ a) |
183 | 182 | ran 78 |
. . . . . . . . . 10
((((c ∪ d) ∪ a)
∩ (a ∪ b)) ∩ b) =
((((c ∪ d) ∩ (a
∪ b)) ∪ a) ∩ b) |
184 | 176, 183 | tr 62 |
. . . . . . . . 9
(((c ∪ d) ∪ a)
∩ ((a ∪ b) ∩ b)) =
((((c ∪ d) ∩ (a
∪ b)) ∪ a) ∩ b) |
185 | | ancom 74 |
. . . . . . . . . . . . 13
((c ∪ d) ∩ (a
∪ b)) = ((a ∪ b) ∩
(c ∪ d)) |
186 | 185, 37 | tr 62 |
. . . . . . . . . . . 12
((c ∪ d) ∩ (a
∪ b)) = 0 |
187 | 186 | ror 71 |
. . . . . . . . . . 11
(((c ∪ d) ∩ (a
∪ b)) ∪ a) = (0 ∪ a) |
188 | | or0r 103 |
. . . . . . . . . . 11
(0 ∪ a) = a |
189 | 187, 188 | tr 62 |
. . . . . . . . . 10
(((c ∪ d) ∩ (a
∪ b)) ∪ a) = a |
190 | 189 | ran 78 |
. . . . . . . . 9
((((c ∪ d) ∩ (a
∪ b)) ∪ a) ∩ b) =
(a ∩ b) |
191 | 174, 184,
190 | 3tr 65 |
. . . . . . . 8
(((c ∪ d) ∪ a)
∩ b) = (a ∩ b) |
192 | 191 | ror 71 |
. . . . . . 7
((((c ∪ d) ∪ a)
∩ b) ∪ (c ∪ d)) =
((a ∩ b) ∪ (c
∪ d)) |
193 | 168, 169,
192 | 3tr 65 |
. . . . . 6
(((c ∪ d) ∪ b)
∩ ((c ∪ d) ∪ a)) =
((a ∩ b) ∪ (c
∪ d)) |
194 | | orcom 73 |
. . . . . 6
((a ∩ b) ∪ (c
∪ d)) = ((c ∪ d) ∪
(a ∩ b)) |
195 | 160, 193,
194 | 3tr 65 |
. . . . 5
(((b ∪ c) ∪ d)
∩ ((a ∪ c) ∪ d)) =
((c ∪ d) ∪ (a
∩ b)) |
196 | 152, 195 | 2an 79 |
. . . 4
((((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ c))
∩ (((b ∪ c) ∪ d)
∩ ((a ∪ c) ∪ d))) =
(((c ∩ d) ∪ (a
∪ b)) ∩ ((c ∪ d) ∪
(a ∩ b))) |
197 | 141, 196 | tr 62 |
. . 3
((((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d))
∩ (((a ∪ b) ∪ c)
∩ ((a ∪ c) ∪ d))) =
(((c ∩ d) ∪ (a
∪ b)) ∩ ((c ∪ d) ∪
(a ∩ b))) |
198 | | ml 1123 |
. . . . . . 7
((c ∩ d) ∪ ((a
∪ b) ∩ ((c ∩ d) ∪
((c ∪ d) ∪ (a
∩ b))))) = (((c ∩ d) ∪
(a ∪ b)) ∩ ((c
∩ d) ∪ ((c ∪ d) ∪
(a ∩ b)))) |
199 | 198 | cm 61 |
. . . . . 6
(((c ∩ d) ∪ (a
∪ b)) ∩ ((c ∩ d) ∪
((c ∪ d) ∪ (a
∩ b)))) = ((c ∩ d) ∪
((a ∪ b) ∩ ((c
∩ d) ∪ ((c ∪ d) ∪
(a ∩ b))))) |
200 | | orass 75 |
. . . . . . . . 9
(((c ∩ d) ∪ (c
∪ d)) ∪ (a ∩ b)) =
((c ∩ d) ∪ ((c
∪ d) ∪ (a ∩ b))) |
201 | 200 | cm 61 |
. . . . . . . 8
((c ∩ d) ∪ ((c
∪ d) ∪ (a ∩ b))) =
(((c ∩ d) ∪ (c
∪ d)) ∪ (a ∩ b)) |
202 | | leao1 162 |
. . . . . . . . . 10
(c ∩ d) ≤ (c ∪
d) |
203 | 202 | df-le2 131 |
. . . . . . . . 9
((c ∩ d) ∪ (c
∪ d)) = (c ∪ d) |
204 | 203 | ror 71 |
. . . . . . . 8
(((c ∩ d) ∪ (c
∪ d)) ∪ (a ∩ b)) =
((c ∪ d) ∪ (a
∩ b)) |
205 | 201, 204 | tr 62 |
. . . . . . 7
((c ∩ d) ∪ ((c
∪ d) ∪ (a ∩ b))) =
((c ∪ d) ∪ (a
∩ b)) |
206 | 205 | lan 77 |
. . . . . 6
(((c ∩ d) ∪ (a
∪ b)) ∩ ((c ∩ d) ∪
((c ∪ d) ∪ (a
∩ b)))) = (((c ∩ d) ∪
(a ∪ b)) ∩ ((c
∪ d) ∪ (a ∩ b))) |
207 | 205 | lan 77 |
. . . . . . 7
((a ∪ b) ∩ ((c
∩ d) ∪ ((c ∪ d) ∪
(a ∩ b)))) = ((a
∪ b) ∩ ((c ∪ d) ∪
(a ∩ b))) |
208 | 207 | lor 70 |
. . . . . 6
((c ∩ d) ∪ ((a
∪ b) ∩ ((c ∩ d) ∪
((c ∪ d) ∪ (a
∩ b))))) = ((c ∩ d) ∪
((a ∪ b) ∩ ((c
∪ d) ∪ (a ∩ b)))) |
209 | 199, 206,
208 | 3tr2 64 |
. . . . 5
(((c ∩ d) ∪ (a
∪ b)) ∩ ((c ∪ d) ∪
(a ∩ b))) = ((c ∩
d) ∪ ((a ∪ b) ∩
((c ∪ d) ∪ (a
∩ b)))) |
210 | | leao1 162 |
. . . . . . . . . . 11
(a ∩ b) ≤ (a ∪
b) |
211 | | leid 148 |
. . . . . . . . . . 11
(a ∩ b) ≤ (a ∩
b) |
212 | 210, 211 | ler2an 173 |
. . . . . . . . . 10
(a ∩ b) ≤ ((a
∪ b) ∩ (a ∩ b)) |
213 | | lear 161 |
. . . . . . . . . 10
((a ∪ b) ∩ (a
∩ b)) ≤ (a ∩ b) |
214 | 212, 213 | lebi 145 |
. . . . . . . . 9
(a ∩ b) = ((a ∪
b) ∩ (a ∩ b)) |
215 | 214 | lor 70 |
. . . . . . . 8
((c ∪ d) ∪ (a
∩ b)) = ((c ∪ d) ∪
((a ∪ b) ∩ (a
∩ b))) |
216 | 215 | lan 77 |
. . . . . . 7
((a ∪ b) ∩ ((c
∪ d) ∪ (a ∩ b))) =
((a ∪ b) ∩ ((c
∪ d) ∪ ((a ∪ b) ∩
(a ∩ b)))) |
217 | | mldual 1124 |
. . . . . . 7
((a ∪ b) ∩ ((c
∪ d) ∪ ((a ∪ b) ∩
(a ∩ b)))) = (((a
∪ b) ∩ (c ∪ d))
∪ ((a ∪ b) ∩ (a
∩ b))) |
218 | 213, 212 | lebi 145 |
. . . . . . . . 9
((a ∪ b) ∩ (a
∩ b)) = (a ∩ b) |
219 | 37, 218 | 2or 72 |
. . . . . . . 8
(((a ∪ b) ∩ (c
∪ d)) ∪ ((a ∪ b) ∩
(a ∩ b))) = (0 ∪ (a ∩ b)) |
220 | | or0r 103 |
. . . . . . . 8
(0 ∪ (a ∩ b)) = (a ∩
b) |
221 | 219, 220 | tr 62 |
. . . . . . 7
(((a ∪ b) ∩ (c
∪ d)) ∪ ((a ∪ b) ∩
(a ∩ b))) = (a ∩
b) |
222 | 216, 217,
221 | 3tr 65 |
. . . . . 6
((a ∪ b) ∩ ((c
∪ d) ∪ (a ∩ b))) =
(a ∩ b) |
223 | 222 | lor 70 |
. . . . 5
((c ∩ d) ∪ ((a
∪ b) ∩ ((c ∪ d) ∪
(a ∩ b)))) = ((c
∩ d) ∪ (a ∩ b)) |
224 | 209, 223 | tr 62 |
. . . 4
(((c ∩ d) ∪ (a
∪ b)) ∩ ((c ∪ d) ∪
(a ∩ b))) = ((c ∩
d) ∪ (a ∩ b)) |
225 | | orcom 73 |
. . . 4
((c ∩ d) ∪ (a
∩ b)) = ((a ∩ b) ∪
(c ∩ d)) |
226 | 224, 225 | tr 62 |
. . 3
(((c ∩ d) ∪ (a
∪ b)) ∩ ((c ∪ d) ∪
(a ∩ b))) = ((a ∩
b) ∪ (c ∩ d)) |
227 | 140, 197,
226 | 3tr 65 |
. 2
((((a ∪ b) ∪ c)
∩ ((a ∪ c) ∪ d))
∩ (((a ∪ b) ∪ d)
∩ ((b ∪ c) ∪ d))) =
((a ∩ b) ∪ (c
∩ d)) |
228 | 139, 227 | tr 62 |
1
((a ∪ c) ∩ (b
∪ d)) = ((a ∩ b) ∪
(c ∩ d)) |