QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wa6 GIF version

Theorem wa6 196
Description: Weak A6. (Contributed by NM, 12-Jul-1998.)
Assertion
Ref Expression
wa6 ((ab) ≡ ((ab ) ∪ (ab) )) = 1

Proof of Theorem wa6
StepHypRef Expression
1 df-b 39 . 2 (ab) = ((ab ) ∪ (ab) )
21bi1 118 1 ((ab) ≡ ((ab ) ∪ (ab) )) = 1
Colors of variables: term
Syntax hints:   = wb 1   wn 4  tb 5  wo 6  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator