Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wr1 | GIF version |
Description: Weak R1. (Contributed by NM, 2-Sep-1997.) |
Ref | Expression |
---|---|
wr1.1 | (a ≡ b) = 1 |
Ref | Expression |
---|---|
wr1 | (b ≡ a) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 96 | . 2 (b ≡ a) = (a ≡ b) | |
2 | wr1.1 | . 2 (a ≡ b) = 1 | |
3 | 1, 2 | ax-r2 36 | 1 (b ≡ a) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 |
This theorem is referenced by: wwbmpr 206 wr2 371 w3tr1 374 w3tr2 375 wleoa 376 wleao 377 wom5 381 wcomlem 382 wleror 393 wleran 394 wletr 396 wlbtr 398 wle3tr1 399 wle3tr2 400 wlebi 402 wledi 405 wledio 406 wlecom 409 wcomd 418 wcom3ii 419 wfh1 423 wfh2 424 wfh3 425 wfh4 426 wcom2or 427 wlem14 430 woml6 436 wdid0id5 1111 wdid0id1 1112 wdid0id2 1113 wdid0id3 1114 wdid0id4 1115 |
Copyright terms: Public domain | W3C validator |