ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blbas Unicode version

Theorem blbas 12605
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )

Proof of Theorem blbas
Dummy variables  x  r  b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 12604 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  E. r  e.  RR+  ( z ( ball `  D ) r ) 
C_  ( x  i^i  y ) )
2 simpll 518 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  D  e.  ( *Met `  X
) )
3 elinel1 3262 . . . . . . . . . 10  |-  ( z  e.  ( x  i^i  y )  ->  z  e.  x )
4 elunii 3741 . . . . . . . . . 10  |-  ( ( z  e.  x  /\  x  e.  ran  ( ball `  D ) )  -> 
z  e.  U. ran  ( ball `  D )
)
53, 4sylan 281 . . . . . . . . 9  |-  ( ( z  e.  ( x  i^i  y )  /\  x  e.  ran  ( ball `  D ) )  -> 
z  e.  U. ran  ( ball `  D )
)
65ad2ant2lr 501 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  z  e.  U. ran  ( ball `  D
) )
7 unirnbl 12595 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  U. ran  ( ball `  D )  =  X )
87ad2antrr 479 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  U. ran  ( ball `  D )  =  X )
96, 8eleqtrd 2218 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  z  e.  X
)
10 blssex 12602 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X
)  ->  ( E. b  e.  ran  ( ball `  D ) ( z  e.  b  /\  b  C_  ( x  i^i  y
) )  <->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  (
x  i^i  y )
) )
112, 9, 10syl2anc 408 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  ( E. b  e.  ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) )  <->  E. r  e.  RR+  ( z (
ball `  D )
r )  C_  (
x  i^i  y )
) )
121, 11mpbird 166 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  z  e.  ( x  i^i  y
) )  /\  (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) ) )  ->  E. b  e.  ran  ( ball `  D )
( z  e.  b  /\  b  C_  (
x  i^i  y )
) )
1312ex 114 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D ) )  ->  E. b  e.  ran  ( ball `  D )
( z  e.  b  /\  b  C_  (
x  i^i  y )
) ) )
1413ralrimdva 2512 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
( x  e.  ran  ( ball `  D )  /\  y  e.  ran  ( ball `  D )
)  ->  A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
1514ralrimivv 2513 . 2  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) )
16 blex 12559 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  e. 
_V )
17 rnexg 4804 . . 3  |-  ( (
ball `  D )  e.  _V  ->  ran  ( ball `  D )  e.  _V )
18 isbasis2g 12215 . . 3  |-  ( ran  ( ball `  D
)  e.  _V  ->  ( ran  ( ball `  D
)  e.  TopBases  <->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
1916, 17, 183syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ran  ( ball `  D
)  e.  TopBases  <->  A. x  e.  ran  ( ball `  D
) A. y  e. 
ran  ( ball `  D
) A. z  e.  ( x  i^i  y
) E. b  e. 
ran  ( ball `  D
) ( z  e.  b  /\  b  C_  ( x  i^i  y
) ) ) )
2015, 19mpbird 166 1  |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686    i^i cin 3070    C_ wss 3071   U.cuni 3736   ran crn 4540   ` cfv 5123  (class class class)co 5774   RR+crp 9444   *Metcxmet 12152   ballcbl 12154   TopBasesctb 12212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-q 9415  df-rp 9445  df-xneg 9562  df-xadd 9563  df-seqfrec 10222  df-exp 10296  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-psmet 12159  df-xmet 12160  df-bl 12162  df-bases 12213
This theorem is referenced by:  mopnval  12614  mopntopon  12615  elmopn  12618  blssopn  12657  metss  12666
  Copyright terms: Public domain W3C validator