ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab2a Unicode version

Theorem brab2a 4440
Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 9-Nov-2015.)
Hypotheses
Ref Expression
brab2a.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
brab2a.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
Assertion
Ref Expression
brab2a  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y    ps, x, y
Allowed substitution hints:    ph( x, y)    R( x, y)

Proof of Theorem brab2a
StepHypRef Expression
1 simpl 107 . . . . 5  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ph )  -> 
( x  e.  C  /\  y  e.  D
) )
21ssopab2i 4061 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } 
C_  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  D ) }
3 brab2a.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
4 df-xp 4398 . . . 4  |-  ( C  X.  D )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  D ) }
52, 3, 43sstr4i 3048 . . 3  |-  R  C_  ( C  X.  D
)
65brel 4439 . 2  |-  ( A R B  ->  ( A  e.  C  /\  B  e.  D )
)
7 df-br 3807 . . . 4  |-  ( A R B  <->  <. A ,  B >.  e.  R )
83eleq2i 2149 . . . 4  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
97, 8bitri 182 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
10 brab2a.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
1110opelopab2a 4049 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
129, 11syl5bb 190 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ps ) )
136, 12biadan2 444 1  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   <.cop 3420   class class class wbr 3806   {copab 3859    X. cxp 4390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-br 3807  df-opab 3861  df-xp 4398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator