ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfval Unicode version

Theorem cncfval 12731
Description: The value of the continuous complex function operation is the set of continuous functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
cncfval  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
Distinct variable groups:    w, f, x, y, z, A    B, f, w, x, y, z

Proof of Theorem cncfval
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7747 . . 3  |-  CC  e.  _V
21elpw2 4082 . 2  |-  ( A  e.  ~P CC  <->  A  C_  CC )
31elpw2 4082 . 2  |-  ( B  e.  ~P CC  <->  B  C_  CC )
4 mapvalg 6552 . . . . . 6  |-  ( ( B  e.  ~P CC  /\  A  e.  ~P CC )  ->  ( B  ^m  A )  =  {
f  |  f : A --> B } )
54ancoms 266 . . . . 5  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  ( B  ^m  A )  =  {
f  |  f : A --> B } )
6 mapex 6548 . . . . 5  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  { f  |  f : A --> B }  e.  _V )
75, 6eqeltrd 2216 . . . 4  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  ( B  ^m  A )  e.  _V )
8 rabexg 4071 . . . 4  |-  ( ( B  ^m  A )  e.  _V  ->  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  e.  _V )
97, 8syl 14 . . 3  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  e.  _V )
10 oveq2 5782 . . . . 5  |-  ( a  =  A  ->  (
b  ^m  a )  =  ( b  ^m  A ) )
11 raleq 2626 . . . . . . . 8  |-  ( a  =  A  ->  ( A. w  e.  a 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
1211rexbidv 2438 . . . . . . 7  |-  ( a  =  A  ->  ( E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
1312ralbidv 2437 . . . . . 6  |-  ( a  =  A  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
1413raleqbi1dv 2634 . . . . 5  |-  ( a  =  A  ->  ( A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
1510, 14rabeqbidv 2681 . . . 4  |-  ( a  =  A  ->  { f  e.  ( b  ^m  a )  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  =  { f  e.  ( b  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
16 oveq1 5781 . . . . 5  |-  ( b  =  B  ->  (
b  ^m  A )  =  ( B  ^m  A ) )
1716rabeqdv 2680 . . . 4  |-  ( b  =  B  ->  { f  e.  ( b  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
18 df-cncf 12730 . . . 4  |-  -cn->  =  ( a  e.  ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
)  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
1915, 17, 18ovmpog 5905 . . 3  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC  /\ 
{ f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  e.  _V )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A
)  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
209, 19mpd3an3 1316 . 2  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
212, 3, 20syl2anbr 290 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071   ~Pcpw 3510   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^m cmap 6542   CCcc 7621    < clt 7803    - cmin 7936   RR+crp 9444   abscabs 10772   -cn->ccncf 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-map 6544  df-cncf 12730
This theorem is referenced by:  elcncf  12732
  Copyright terms: Public domain W3C validator