ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleq Unicode version

Theorem raleq 2522
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
Assertion
Ref Expression
raleq  |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem raleq
StepHypRef Expression
1 nfcv 2194 . 2  |-  F/_ x A
2 nfcv 2194 . 2  |-  F/_ x B
31, 2raleqf 2518 1  |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102    = wceq 1259   A.wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328
This theorem is referenced by:  raleqi  2526  raleqdv  2528  raleqbi1dv  2530  sbralie  2563  inteq  3646  iineq1  3699  bnd2  3954  frforeq2  4110  weeq2  4122  ordeq  4137  reg2exmid  4289  reg3exmid  4332  fncnv  4993  funimaexglem  5010  isoeq4  5472  acexmidlemv  5538  tfrlem1  5954  tfr0  5968  tfrlemisucaccv  5970  tfrlemi1  5977  tfrlemi14d  5978  tfrexlem  5979  ac6sfi  6383  supeq1  6392  supeq2  6395  rexanuz  9815  rexfiuz  9816  setindis  10479  bdsetindis  10481  strcoll2  10495
  Copyright terms: Public domain W3C validator