ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpdis Unicode version

Theorem cnpdis 12411
Description: If  A is an isolated point in  X (or equivalently, the singleton  { A } is open in  X), then every function is continuous at  A. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( ( J  CnP  K ) `  A )  =  ( Y  ^m  X ) )

Proof of Theorem cnpdis
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 524 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  { A }  e.  J
)
2 simpll3 1022 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  X )
3 snidg 3554 . . . . . . . . 9  |-  ( A  e.  X  ->  A  e.  { A } )
42, 3syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  { A } )
5 simprr 521 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
( f `  A
)  e.  x )
6 simplrr 525 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
f : X --> Y )
7 ffn 5272 . . . . . . . . . . 11  |-  ( f : X --> Y  -> 
f  Fn  X )
8 elpreima 5539 . . . . . . . . . . 11  |-  ( f  Fn  X  ->  ( A  e.  ( `' f " x )  <->  ( A  e.  X  /\  (
f `  A )  e.  x ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  -> 
( A  e.  ( `' f " x
)  <->  ( A  e.  X  /\  ( f `
 A )  e.  x ) ) )
102, 5, 9mpbir2and 928 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  A  e.  ( `' f " x ) )
1110snssd 3665 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  { A }  C_  ( `' f " x
) )
12 eleq2 2203 . . . . . . . . . 10  |-  ( y  =  { A }  ->  ( A  e.  y  <-> 
A  e.  { A } ) )
13 sseq1 3120 . . . . . . . . . 10  |-  ( y  =  { A }  ->  ( y  C_  ( `' f " x
)  <->  { A }  C_  ( `' f " x
) ) )
1412, 13anbi12d 464 . . . . . . . . 9  |-  ( y  =  { A }  ->  ( ( A  e.  y  /\  y  C_  ( `' f " x
) )  <->  ( A  e.  { A }  /\  { A }  C_  ( `' f " x
) ) ) )
1514rspcev 2789 . . . . . . . 8  |-  ( ( { A }  e.  J  /\  ( A  e. 
{ A }  /\  { A }  C_  ( `' f " x
) ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) )
161, 4, 11, 15syl12anc 1214 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  ( x  e.  K  /\  (
f `  A )  e.  x ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) )
1716expr 372 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  ( { A }  e.  J  /\  f : X --> Y ) )  /\  x  e.  K )  ->  (
( f `  A
)  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) )
1817ralrimiva 2505 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  ( { A }  e.  J  /\  f : X --> Y ) )  ->  A. x  e.  K  ( (
f `  A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) )
1918expr 372 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f : X --> Y  ->  A. x  e.  K  ( ( f `  A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) ) )
2019pm4.71d 390 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f : X --> Y 
<->  ( f : X --> Y  /\  A. x  e.  K  ( ( f `
 A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) ) ) )
21 simpl2 985 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  K  e.  (TopOn `  Y ) )
22 toponmax 12192 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2321, 22syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  Y  e.  K )
24 simpl1 984 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  J  e.  (TopOn `  X ) )
25 toponmax 12192 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2624, 25syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  X  e.  J )
2723, 26elmapd 6556 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( Y  ^m  X )  <-> 
f : X --> Y ) )
28 iscnp3 12372 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( f  e.  ( ( J  CnP  K ) `  A )  <-> 
( f : X --> Y  /\  A. x  e.  K  ( ( f `
 A )  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f "
x ) ) ) ) ) )
2928adantr 274 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( ( J  CnP  K
) `  A )  <->  ( f : X --> Y  /\  A. x  e.  K  ( ( f `  A
)  e.  x  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  ( `' f " x ) ) ) ) ) )
3020, 27, 293bitr4rd 220 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( f  e.  ( ( J  CnP  K
) `  A )  <->  f  e.  ( Y  ^m  X ) ) )
3130eqrdv 2137 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  { A }  e.  J )  ->  ( ( J  CnP  K ) `  A )  =  ( Y  ^m  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   {csn 3527   `'ccnv 4538   "cima 4542    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^m cmap 6542  TopOnctopon 12177    CnP ccnp 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12165  df-topon 12178  df-cnp 12358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator