![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfnot | Unicode version |
Description: Given falsum, we can
define the negation of a wff ![]() ![]() |
Ref | Expression |
---|---|
dfnot |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1292 |
. 2
![]() ![]() ![]() | |
2 | mtt 643 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 |
This theorem is referenced by: inegd 1304 pclem6 1306 alnex 1429 alexim 1577 difin 3208 indifdir 3227 recvguniq 10019 bj-axempty2 10843 |
Copyright terms: Public domain | W3C validator |