ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniq Unicode version

Theorem recvguniq 10774
Description: Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
recvguniq.f  |-  ( ph  ->  F : NN --> RR )
recvguniq.lre  |-  ( ph  ->  L  e.  RR )
recvguniq.l  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) ) )
recvguniq.mre  |-  ( ph  ->  M  e.  RR )
recvguniq.m  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )
Assertion
Ref Expression
recvguniq  |-  ( ph  ->  L  =  M )
Distinct variable groups:    j, F, x   
j, L, k, x   
j, M, k, x    ph, k
Allowed substitution hints:    ph( x, j)    F( k)

Proof of Theorem recvguniq
StepHypRef Expression
1 recvguniq.lre . . . . 5  |-  ( ph  ->  L  e.  RR )
2 recvguniq.mre . . . . 5  |-  ( ph  ->  M  e.  RR )
3 reaplt 8357 . . . . 5  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L #  M  <->  ( L  <  M  \/  M  < 
L ) ) )
41, 2, 3syl2anc 408 . . . 4  |-  ( ph  ->  ( L #  M  <->  ( L  <  M  \/  M  < 
L ) ) )
5 oveq2 5782 . . . . . . . . . . . 12  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( L  +  x )  =  ( L  +  ( ( M  -  L )  /  2
) ) )
65breq2d 3941 . . . . . . . . . . 11  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( F `  k
)  <  ( L  +  x )  <->  ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2 ) ) ) )
7 oveq2 5782 . . . . . . . . . . . 12  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( F `  k
)  +  x )  =  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) )
87breq2d 3941 . . . . . . . . . . 11  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( L  <  ( ( F `
 k )  +  x )  <->  L  <  ( ( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) )
96, 8anbi12d 464 . . . . . . . . . 10  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  <-> 
( ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2 ) )  /\  L  <  (
( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) ) )
10 oveq2 5782 . . . . . . . . . . . 12  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( M  +  x )  =  ( M  +  ( ( M  -  L )  /  2
) ) )
1110breq2d 3941 . . . . . . . . . . 11  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( F `  k
)  <  ( M  +  x )  <->  ( F `  k )  <  ( M  +  ( ( M  -  L )  /  2 ) ) ) )
127breq2d 3941 . . . . . . . . . . 11  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( M  <  ( ( F `
 k )  +  x )  <->  M  <  ( ( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) )
1311, 12anbi12d 464 . . . . . . . . . 10  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) )  <-> 
( ( F `  k )  <  ( M  +  ( ( M  -  L )  /  2 ) )  /\  M  <  (
( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) ) )
149, 13anbi12d 464 . . . . . . . . 9  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  (
( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  ( (
( F `  k
)  <  ( L  +  ( ( M  -  L )  / 
2 ) )  /\  L  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) )  /\  ( ( F `  k )  <  ( M  +  ( ( M  -  L )  /  2 ) )  /\  M  <  (
( F `  k
)  +  ( ( M  -  L )  /  2 ) ) ) ) ) )
1514rexbidv 2438 . . . . . . . 8  |-  ( x  =  ( ( M  -  L )  / 
2 )  ->  ( E. k  e.  NN  ( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2
) )  /\  L  <  ( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )
16 recvguniq.l . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) ) )
17 recvguniq.m . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )
18 r19.26 2558 . . . . . . . . . . . 12  |-  ( A. x  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) )  <->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
1916, 17, 18sylanbrc 413 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) ) )
20 nnuz 9368 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
2120rexanuz2 10770 . . . . . . . . . . . 12  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) ) )
2221ralbii 2441 . . . . . . . . . . 11  |-  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  A. x  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) ) )
2319, 22sylibr 133 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
2420r19.2uz 10772 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  ->  E. k  e.  NN  ( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
2524ralimi 2495 . . . . . . . . . 10  |-  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  ->  A. x  e.  RR+  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
2623, 25syl 14 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  RR+  E. k  e.  NN  (
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  /\  ( ( F `
 k )  < 
( M  +  x
)  /\  M  <  ( ( F `  k
)  +  x ) ) ) )
2726adantr 274 . . . . . . . 8  |-  ( (
ph  /\  L  <  M )  ->  A. x  e.  RR+  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
28 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  L  <  M )  ->  L  <  M )
291adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  L  <  M )  ->  L  e.  RR )
302adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  L  <  M )  ->  M  e.  RR )
31 difrp 9487 . . . . . . . . . . 11  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L  <  M  <->  ( M  -  L )  e.  RR+ ) )
3229, 30, 31syl2anc 408 . . . . . . . . . 10  |-  ( (
ph  /\  L  <  M )  ->  ( L  <  M  <->  ( M  -  L )  e.  RR+ ) )
3328, 32mpbid 146 . . . . . . . . 9  |-  ( (
ph  /\  L  <  M )  ->  ( M  -  L )  e.  RR+ )
3433rphalfcld 9503 . . . . . . . 8  |-  ( (
ph  /\  L  <  M )  ->  ( ( M  -  L )  /  2 )  e.  RR+ )
3515, 27, 34rspcdva 2794 . . . . . . 7  |-  ( (
ph  /\  L  <  M )  ->  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2
) )  /\  L  <  ( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) )
36 recvguniq.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
3736ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  F : NN --> RR )
382ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  M  e.  RR )
391ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  L  e.  RR )
40 simprl 520 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  k  e.  NN )
41 simprrr 529 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) )  ->  M  <  ( ( F `  k
)  +  ( ( M  -  L )  /  2 ) ) )
4241adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  M  <  ( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )
43 simprll 526 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) )  ->  ( F `  k )  <  ( L  +  ( ( M  -  L )  /  2 ) ) )
4443adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  ->  ( F `  k )  <  ( L  +  ( ( M  -  L
)  /  2 ) ) )
4537, 38, 39, 40, 42, 44recvguniqlem 10773 . . . . . . 7  |-  ( ( ( ph  /\  L  <  M )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( M  -  L
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( M  -  L
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( M  -  L )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( M  -  L )  /  2
) ) ) ) ) )  -> F.  )
4635, 45rexlimddv 2554 . . . . . 6  |-  ( (
ph  /\  L  <  M )  -> F.  )
4746ex 114 . . . . 5  |-  ( ph  ->  ( L  <  M  -> F.  ) )
48 oveq2 5782 . . . . . . . . . . . 12  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( L  +  x )  =  ( L  +  ( ( L  -  M )  /  2
) ) )
4948breq2d 3941 . . . . . . . . . . 11  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( F `  k
)  <  ( L  +  x )  <->  ( F `  k )  <  ( L  +  ( ( L  -  M )  /  2 ) ) ) )
50 oveq2 5782 . . . . . . . . . . . 12  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( F `  k
)  +  x )  =  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) )
5150breq2d 3941 . . . . . . . . . . 11  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( L  <  ( ( F `
 k )  +  x )  <->  L  <  ( ( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) )
5249, 51anbi12d 464 . . . . . . . . . 10  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) )  <-> 
( ( F `  k )  <  ( L  +  ( ( L  -  M )  /  2 ) )  /\  L  <  (
( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) ) )
53 oveq2 5782 . . . . . . . . . . . 12  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( M  +  x )  =  ( M  +  ( ( L  -  M )  /  2
) ) )
5453breq2d 3941 . . . . . . . . . . 11  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( F `  k
)  <  ( M  +  x )  <->  ( F `  k )  <  ( M  +  ( ( L  -  M )  /  2 ) ) ) )
5550breq2d 3941 . . . . . . . . . . 11  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( M  <  ( ( F `
 k )  +  x )  <->  M  <  ( ( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) )
5654, 55anbi12d 464 . . . . . . . . . 10  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) )  <-> 
( ( F `  k )  <  ( M  +  ( ( L  -  M )  /  2 ) )  /\  M  <  (
( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) ) )
5752, 56anbi12d 464 . . . . . . . . 9  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  (
( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  ( (
( F `  k
)  <  ( L  +  ( ( L  -  M )  / 
2 ) )  /\  L  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) )  /\  ( ( F `  k )  <  ( M  +  ( ( L  -  M )  /  2 ) )  /\  M  <  (
( F `  k
)  +  ( ( L  -  M )  /  2 ) ) ) ) ) )
5857rexbidv 2438 . . . . . . . 8  |-  ( x  =  ( ( L  -  M )  / 
2 )  ->  ( E. k  e.  NN  ( ( ( F `
 k )  < 
( L  +  x
)  /\  L  <  ( ( F `  k
)  +  x ) )  /\  ( ( F `  k )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) )  <->  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  ( ( L  -  M )  /  2
) )  /\  L  <  ( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )
5926adantr 274 . . . . . . . 8  |-  ( (
ph  /\  M  <  L )  ->  A. x  e.  RR+  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x
) )  /\  (
( F `  k
)  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x
) ) ) )
60 difrp 9487 . . . . . . . . . . 11  |-  ( ( M  e.  RR  /\  L  e.  RR )  ->  ( M  <  L  <->  ( L  -  M )  e.  RR+ ) )
612, 1, 60syl2anc 408 . . . . . . . . . 10  |-  ( ph  ->  ( M  <  L  <->  ( L  -  M )  e.  RR+ ) )
6261biimpa 294 . . . . . . . . 9  |-  ( (
ph  /\  M  <  L )  ->  ( L  -  M )  e.  RR+ )
6362rphalfcld 9503 . . . . . . . 8  |-  ( (
ph  /\  M  <  L )  ->  ( ( L  -  M )  /  2 )  e.  RR+ )
6458, 59, 63rspcdva 2794 . . . . . . 7  |-  ( (
ph  /\  M  <  L )  ->  E. k  e.  NN  ( ( ( F `  k )  <  ( L  +  ( ( L  -  M )  /  2
) )  /\  L  <  ( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) )
6536ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  F : NN --> RR )
661ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  L  e.  RR )
672ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  M  e.  RR )
68 simprl 520 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  k  e.  NN )
69 simprlr 527 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) )  ->  L  <  ( ( F `  k
)  +  ( ( L  -  M )  /  2 ) ) )
7069adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  L  <  ( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )
71 simprrl 528 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) )  ->  ( F `  k )  <  ( M  +  ( ( L  -  M )  /  2 ) ) )
7271adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  ->  ( F `  k )  <  ( M  +  ( ( L  -  M
)  /  2 ) ) )
7365, 66, 67, 68, 70, 72recvguniqlem 10773 . . . . . . 7  |-  ( ( ( ph  /\  M  <  L )  /\  (
k  e.  NN  /\  ( ( ( F `
 k )  < 
( L  +  ( ( L  -  M
)  /  2 ) )  /\  L  < 
( ( F `  k )  +  ( ( L  -  M
)  /  2 ) ) )  /\  (
( F `  k
)  <  ( M  +  ( ( L  -  M )  / 
2 ) )  /\  M  <  ( ( F `
 k )  +  ( ( L  -  M )  /  2
) ) ) ) ) )  -> F.  )
7464, 73rexlimddv 2554 . . . . . 6  |-  ( (
ph  /\  M  <  L )  -> F.  )
7574ex 114 . . . . 5  |-  ( ph  ->  ( M  <  L  -> F.  ) )
7647, 75jaod 706 . . . 4  |-  ( ph  ->  ( ( L  < 
M  \/  M  < 
L )  -> F.  ) )
774, 76sylbid 149 . . 3  |-  ( ph  ->  ( L #  M  -> F.  ) )
78 dfnot 1349 . . 3  |-  ( -.  L #  M  <->  ( L #  M  -> F.  ) )
7977, 78sylibr 133 . 2  |-  ( ph  ->  -.  L #  M )
801recnd 7801 . . 3  |-  ( ph  ->  L  e.  CC )
812recnd 7801 . . 3  |-  ( ph  ->  M  e.  CC )
82 apti 8391 . . 3  |-  ( ( L  e.  CC  /\  M  e.  CC )  ->  ( L  =  M  <->  -.  L #  M )
)
8380, 81, 82syl2anc 408 . 2  |-  ( ph  ->  ( L  =  M  <->  -.  L #  M )
)
8479, 83mpbird 166 1  |-  ( ph  ->  L  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331   F. wfal 1336    e. wcel 1480   A.wral 2416   E.wrex 2417   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   CCcc 7625   RRcr 7626   1c1 7628    + caddc 7630    < clt 7807    - cmin 7940   # cap 8350    / cdiv 8439   NNcn 8727   2c2 8778   ZZ>=cuz 9333   RR+crp 9448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449
This theorem is referenced by:  resqrexlemsqa  10803
  Copyright terms: Public domain W3C validator