ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 Unicode version

Theorem dju1p1e2 7053
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2  |-  ( 1o 1o )  ~~  2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 6952 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  =  ( 1o 1o )
2 djuin 6949 . . 3  |-  ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)
3 djulf1o 6943 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
4 f1of1 5366 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
53, 4ax-mp 5 . . . . . . 7  |- inl : _V -1-1-> ( { (/) }  X.  _V )
6 ssv 3119 . . . . . . 7  |-  1o  C_  _V
7 f1ores 5382 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  1o  C_  _V )  ->  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o ) )
85, 6, 7mp2an 422 . . . . . 6  |-  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )
9 1oex 6321 . . . . . . 7  |-  1o  e.  _V
109f1oen 6653 . . . . . 6  |-  ( (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )  ->  1o  ~~  (inl " 1o ) )
118, 10ax-mp 5 . . . . 5  |-  1o  ~~  (inl " 1o )
1211ensymi 6676 . . . 4  |-  (inl " 1o )  ~~  1o
13 djurf1o 6944 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
14 f1of1 5366 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1513, 14ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
16 f1ores 5382 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  1o  C_  _V )  ->  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o ) )
1715, 6, 16mp2an 422 . . . . . 6  |-  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )
189f1oen 6653 . . . . . 6  |-  ( (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )  ->  1o  ~~  (inr " 1o ) )
1917, 18ax-mp 5 . . . . 5  |-  1o  ~~  (inr " 1o )
2019ensymi 6676 . . . 4  |-  (inr " 1o )  ~~  1o
21 pm54.43 7046 . . . 4  |-  ( ( (inl " 1o ) 
~~  1o  /\  (inr " 1o )  ~~  1o )  ->  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/) 
<->  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o ) )
2212, 20, 21mp2an 422 . . 3  |-  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)  <->  (
(inl " 1o )  u.  (inr " 1o ) )  ~~  2o )
232, 22mpbi 144 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o
241, 23eqbrtrri 3951 1  |-  ( 1o 1o )  ~~  2o
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1331   _Vcvv 2686    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   class class class wbr 3929    X. cxp 4537    |` cres 4541   "cima 4542   -1-1->wf1 5120   -1-1-onto->wf1o 5122   1oc1o 6306   2oc2o 6307    ~~ cen 6632   ⊔ cdju 6922  inlcinl 6930  inrcinr 6931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  exmidfodomrlemr  7058  exmidfodomrlemrALT  7059
  Copyright terms: Public domain W3C validator