ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imacnv Unicode version

Theorem f1imacnv 5171
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
f1imacnv  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( `' F " ( F " C
) )  =  C )

Proof of Theorem f1imacnv
StepHypRef Expression
1 resima 4671 . 2  |-  ( ( `' F  |`  ( F
" C ) )
" ( F " C ) )  =  ( `' F "
( F " C
) )
2 df-f1 4935 . . . . . . 7  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
32simprbi 264 . . . . . 6  |-  ( F : A -1-1-> B  ->  Fun  `' F )
43adantr 265 . . . . 5  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  Fun  `' F
)
5 funcnvres 5000 . . . . 5  |-  ( Fun  `' F  ->  `' ( F  |`  C )  =  ( `' F  |`  ( F " C
) ) )
64, 5syl 14 . . . 4  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  `' ( F  |`  C )  =  ( `' F  |`  ( F
" C ) ) )
76imaeq1d 4695 . . 3  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( `' ( F  |`  C ) " ( F " C ) )  =  ( ( `' F  |`  ( F " C
) ) " ( F " C ) ) )
8 f1ores 5169 . . . . 5  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
9 f1ocnv 5167 . . . . 5  |-  ( ( F  |`  C ) : C -1-1-onto-> ( F " C
)  ->  `' ( F  |`  C ) : ( F " C
)
-1-1-onto-> C )
108, 9syl 14 . . . 4  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C )
11 imadmrn 4706 . . . . 5  |-  ( `' ( F  |`  C )
" dom  `' ( F  |`  C ) )  =  ran  `' ( F  |`  C )
12 f1odm 5158 . . . . . 6  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  dom  `' ( F  |`  C )  =  ( F " C ) )
1312imaeq2d 4696 . . . . 5  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  ( `' ( F  |`  C )
" dom  `' ( F  |`  C ) )  =  ( `' ( F  |`  C ) " ( F " C ) ) )
14 f1ofo 5161 . . . . . 6  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  `' ( F  |`  C ) : ( F " C
) -onto-> C )
15 forn 5137 . . . . . 6  |-  ( `' ( F  |`  C ) : ( F " C ) -onto-> C  ->  ran  `' ( F  |`  C )  =  C )
1614, 15syl 14 . . . . 5  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  ran  `' ( F  |`  C )  =  C )
1711, 13, 163eqtr3a 2112 . . . 4  |-  ( `' ( F  |`  C ) : ( F " C ) -1-1-onto-> C  ->  ( `' ( F  |`  C )
" ( F " C ) )  =  C )
1810, 17syl 14 . . 3  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( `' ( F  |`  C ) " ( F " C ) )  =  C )
197, 18eqtr3d 2090 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( ( `' F  |`  ( F " C ) ) "
( F " C
) )  =  C )
201, 19syl5eqr 2102 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( `' F " ( F " C
) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    C_ wss 2945   `'ccnv 4372   dom cdm 4373   ran crn 4374    |` cres 4375   "cima 4376   Fun wfun 4924   -->wf 4926   -1-1->wf1 4927   -onto->wfo 4928   -1-1-onto->wf1o 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937
This theorem is referenced by:  f1opw2  5734
  Copyright terms: Public domain W3C validator