Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass3 Unicode version

Theorem funimass3 5309
 Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5308 would be the special case of being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3

Proof of Theorem funimass3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 funimass4 5250 . . 3
2 ssel 2994 . . . . . 6
3 fvimacnv 5308 . . . . . . 7
43ex 113 . . . . . 6
52, 4syl9r 72 . . . . 5
65imp31 252 . . . 4
76ralbidva 2365 . . 3
81, 7bitrd 186 . 2
9 dfss3 2990 . 2
108, 9syl6bbr 196 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103   wcel 1434  wral 2349   wss 2974  ccnv 4364   cdm 4365  cima 4368   wfun 4920  cfv 4926 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-fv 4934 This theorem is referenced by:  funimass5  5310  funconstss  5311  fimacnv  5322
 Copyright terms: Public domain W3C validator