HomeHome Intuitionistic Logic Explorer
Theorem List (p. 56 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfvmpt3i 5501* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  B  e.  _V   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmptd 5502* Deduction version of fvmpt 5498. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )   &    |-  (
 ( ph  /\  x  =  A )  ->  B  =  C )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  C  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  C )
 
Theoremmptrcl 5503* Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.) (Revised by Jim Kingdon, 27-Mar-2023.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( I  e.  ( F `  X )  ->  X  e.  A )
 
Theoremfvmpt2 5504* Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `
  x )  =  B )
 
Theoremfvmptssdm 5505* If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( D  e.  dom 
 F  /\  A. x  e.  A  B  C_  C )  ->  ( F `  D )  C_  C )
 
Theoremmptfvex 5506* Sufficient condition for a maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( A. x  B  e.  V  /\  C  e.  W )  ->  ( F `  C )  e.  _V )
 
Theoremfvmpt2d 5507* Deduction version of fvmpt2 5504. (Contributed by Thierry Arnoux, 8-Dec-2016.)
 |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  V )   =>    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
 
Theoremfvmptdf 5508* Alternate deduction version of fvmpt 5498, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   &    |-  F/_ x F   &    |-  F/ x ps   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
 
Theoremfvmptdv 5509* Alternate deduction version of fvmpt 5498, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
 
Theoremfvmptdv2 5510* Alternate deduction version of fvmpt 5498, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
 
Theoremmpteqb 5511* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5518. (Contributed by Mario Carneiro, 14-Nov-2014.)
 |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
 )
 
Theoremfvmptt 5512* Closed theorem form of fvmpt 5498. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  ( ( A. x ( x  =  A  ->  B  =  C ) 
 /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V ) )  ->  ( F `  A )  =  C )
 
Theoremfvmptf 5513* Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5497 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x C   &    |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   =>    |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A )  =  C )
 
Theoremfvmptd3 5514* Deduction version of fvmpt 5498. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F  =  ( x  e.  D  |->  B )   &    |-  ( x  =  A  ->  B  =  C )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  C  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  C )
 
Theoremelfvmptrab1 5515* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )   &    |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e.  _V )   =>    |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
 
Theoremelfvmptrab 5516* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )   &    |-  ( X  e.  V  ->  M  e.  _V )   =>    |-  ( Y  e.  ( F `  X ) 
 ->  ( X  e.  V  /\  Y  e.  M ) )
 
Theoremfvopab6 5517* Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  F  =  { <. x ,  y >.  |  (
 ph  /\  y  =  B ) }   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ( x  =  A  ->  B  =  C )   =>    |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `  A )  =  C )
 
Theoremeqfnfv 5518* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <-> 
 A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
 
Theoremeqfnfv2 5519* Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G 
 <->  ( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
 
Theoremeqfnfv3 5520* Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G 
 <->  ( B  C_  A  /\  A. x  e.  A  ( x  e.  B  /\  ( F `  x )  =  ( G `  x ) ) ) ) )
 
Theoremeqfnfvd 5521* Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  A )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )   =>    |-  ( ph  ->  F  =  G )
 
Theoremeqfnfv2f 5522* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5518 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
 |-  F/_ x F   &    |-  F/_ x G   =>    |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
 
Theoremeqfunfv 5523* Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
 |-  ( ( Fun  F  /\  Fun  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G 
 /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
 
Theoremfvreseq 5524* Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
 |-  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  B  C_  A )  ->  (
 ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
 
Theoremfndmdif 5525* Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  { x  e.  A  |  ( F `  x )  =/=  ( G `  x ) } )
 
Theoremfndmdifcom 5526 The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  dom  ( G  \  F ) )
 
Theoremfndmin 5527* Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
 
Theoremfneqeql 5528 Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <-> 
 dom  ( F  i^i  G )  =  A ) )
 
Theoremfneqeql2 5529 Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <->  A  C_  dom  ( F  i^i  G ) ) )
 
Theoremfnreseql 5530 Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  ->  ( ( F  |`  X )  =  ( G  |`  X )  <->  X  C_  dom  ( F  i^i  G ) ) )
 
Theoremchfnrn 5531* The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
 |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
 
Theoremfunfvop 5532 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `  A ) >.  e.  F )
 
Theoremfunfvbrb 5533 Two ways to say that  A is in the domain of  F. (Contributed by Mario Carneiro, 1-May-2014.)
 |-  ( Fun  F  ->  ( A  e.  dom  F  <->  A F ( F `  A ) ) )
 
Theoremfvimacnvi 5534 A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
 |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  ( F `  A )  e.  B )
 
Theoremfvimacnv 5535 The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5201 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
 
Theoremfunimass3 5536 A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5535 would be the special case of  A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( ( F " A )  C_  B  <->  A  C_  ( `' F " B ) ) )
 
Theoremfunimass5 5537* A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( A  C_  ( `' F " B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfunconstss 5538* Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( A. x  e.  A  ( F `  x )  =  B  <->  A 
 C_  ( `' F " { B } )
 ) )
 
Theoremelpreima 5539 Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  <-> 
 ( B  e.  A  /\  ( F `  B )  e.  C )
 ) )
 
Theoremfniniseg 5540 Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  Fn  A  ->  ( C  e.  ( `' F " { B } )  <->  ( C  e.  A  /\  ( F `  C )  =  B ) ) )
 
Theoremfncnvima2 5541* Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F " B )  =  { x  e.  A  |  ( F `  x )  e.  B } )
 
Theoremfniniseg2 5542* Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F " { B } )  =  { x  e.  A  |  ( F `  x )  =  B }
 )
 
Theoremfnniniseg2 5543* Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F "
 ( _V  \  { B } ) )  =  { x  e.  A  |  ( F `  x )  =/=  B } )
 
Theoremrexsupp 5544* Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
 |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F "
 ( _V  \  { Z } ) ) ph  <->  E. x  e.  A  (
 ( F `  x )  =/=  Z  /\  ph )
 ) )
 
Theoremunpreima 5545 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' F " ( A  u.  B ) )  =  ( ( `' F " A )  u.  ( `' F " B ) ) )
 
Theoreminpreima 5546 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
 
Theoremdifpreima 5547 Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A 
 \  B ) )  =  ( ( `' F " A ) 
 \  ( `' F " B ) ) )
 
Theoremrespreima 5548 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' ( F  |`  B )
 " A )  =  ( ( `' F " A )  i^i  B ) )
 
Theoremfimacnv 5549 The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
 |-  ( F : A --> B  ->  ( `' F " B )  =  A )
 
Theoremfnopfv 5550 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  <. B ,  ( F `  B ) >.  e.  F )
 
Theoremfvelrn 5551 A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F )
 
Theoremfnfvelrn 5552 A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B )  e.  ran  F )
 
Theoremffvelrn 5553 A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
 |-  ( ( F : A
 --> B  /\  C  e.  A )  ->  ( F `
  C )  e.  B )
 
Theoremffvelrni 5554 A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
 |-  F : A --> B   =>    |-  ( C  e.  A  ->  ( F `  C )  e.  B )
 
Theoremffvelrnda 5555 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ( ph  /\  C  e.  A ) 
 ->  ( F `  C )  e.  B )
 
Theoremffvelrnd 5556 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  ( F `  C )  e.  B )
 
Theoremrexrn 5557* Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( E. x  e.  ran  F ph  <->  E. y  e.  A  ps ) )
 
Theoremralrn 5558* Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( A. x  e.  ran  F ph  <->  A. y  e.  A  ps ) )
 
Theoremelrnrexdm 5559* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  ran  F  ->  E. x  e.  dom  F  Y  =  ( F `
  x ) ) )
 
Theoremelrnrexdmb 5560* For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  ran  F  <->  E. x  e.  dom  F  Y  =  ( F `  x ) ) )
 
Theoremeldmrexrn 5561* For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
 |-  ( Fun  F  ->  ( Y  e.  dom  F  ->  E. x  e.  ran  F  x  =  ( F `
  Y ) ) )
 
Theoremralrnmpt 5562* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e. 
 ran  F ps  <->  A. x  e.  A  ch ) )
 
Theoremrexrnmpt 5563* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( E. y  e. 
 ran  F ps  <->  E. x  e.  A  ch ) )
 
Theoremdff2 5564 Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  F  C_  ( A  X.  B ) ) )
 
Theoremdff3im 5565* Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |-  ( F : A --> B  ->  ( F  C_  ( A  X.  B ) 
 /\  A. x  e.  A  E! y  x F y ) )
 
Theoremdff4im 5566* Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |-  ( F : A --> B  ->  ( F  C_  ( A  X.  B ) 
 /\  A. x  e.  A  E! y  e.  B  x F y ) )
 
Theoremdffo3 5567* An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
 
Theoremdffo4 5568* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
 
Theoremdffo5 5569* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
 
Theoremfmpt 5570* Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
 
Theoremf1ompt 5571* Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C )
 )
 
Theoremfmpti 5572* Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( x  e.  A  ->  C  e.  B )   =>    |-  F : A --> B
 
Theoremfvmptelrn 5573* The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )   =>    |-  ( ( ph  /\  x  e.  A )  ->  B  e.  C )
 
Theoremfmptd 5574* Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  C )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremfmpttd 5575* Version of fmptd 5574 with inlined definition. Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021.) (Proof shortened by BJ, 16-Aug-2022.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )
 
Theoremfmpt3d 5576* Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.)
 |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  C )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremfmptdf 5577* A version of fmptd 5574 using bound-variable hypothesis instead of a distinct variable condition for  ph. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  C )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremffnfv 5578* A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremffnfvf 5579 A function maps to a class to which all values belong. This version of ffnfv 5578 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x F   =>    |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfnfvrnss 5580* An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
 |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
 
Theoremrnmptss 5581* The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 24-Sep-2017.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  C  ->  ran 
 F  C_  C )
 
Theoremfmpt2d 5582* Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  V )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ( ph  /\  y  e.  A )  ->  ( F `  y )  e.  C )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremffvresb 5583* A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  ( Fun  F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F 
 /\  ( F `  x )  e.  B ) ) )
 
Theoremresflem 5584* A lemma to bound the range of a restriction. The conclusion would also hold with  ( X  i^i  Y ) in place of  Y (provided  x does not occur in  X). If that stronger result is needed, it is however simpler to use the instance of resflem 5584 where  ( X  i^i  Y ) is substituted for  Y (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
 |-  ( ph  ->  F : V --> X )   &    |-  ( ph  ->  A  C_  V )   &    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  e.  Y )   =>    |-  ( ph  ->  ( F  |`  A ) : A --> Y )
 
Theoremf1oresrab 5585* Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ph  ->  F : A
 -1-1-onto-> B )   &    |-  ( ( ph  /\  x  e.  A  /\  y  =  C )  ->  ( ch  <->  ps ) )   =>    |-  ( ph  ->  ( F  |`  { x  e.  A  |  ps }
 ) : { x  e.  A  |  ps } -1-1-onto-> {
 y  e.  B  |  ch } )
 
Theoremfmptco 5586* Composition of two functions expressed as ordered-pair class abstractions. If  F has the equation ( x + 2 ) and  G the equation ( 3 * z ) then  ( G  o.  F
) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   &    |-  (
 y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  T ) )
 
Theoremfmptcof 5587* Version of fmptco 5586 where  ph needn't be distinct from  x. (Contributed by NM, 27-Dec-2014.)
 |-  ( ph  ->  A. x  e.  A  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  T ) )
 
Theoremfmptcos 5588* Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ph  ->  A. x  e.  A  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  [_ R  /  y ]_ S ) )
 
Theoremcofmpt 5589* Express composition of a maps-to function with another function in a maps-to notation. (Contributed by Thierry Arnoux, 29-Jun-2017.)
 |-  ( ph  ->  F : C --> D )   &    |-  (
 ( ph  /\  x  e.  A )  ->  B  e.  C )   =>    |-  ( ph  ->  ( F  o.  ( x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( F `  B ) ) )
 
Theoremfcompt 5590* Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( A : D
 --> E  /\  B : C
 --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
  x ) ) ) )
 
Theoremfcoconst 5591 Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
 |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  ( F  o.  ( I  X.  { Y } ) )  =  ( I  X.  {
 ( F `  Y ) } ) )
 
Theoremfsn 5592 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } )
 
Theoremfsng 5593 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B } 
 <->  F  =  { <. A ,  B >. } )
 )
 
Theoremfsn2 5594 A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
 |-  A  e.  _V   =>    |-  ( F : { A } --> B  <->  ( ( F `
  A )  e.  B  /\  F  =  { <. A ,  ( F `  A ) >. } ) )
 
Theoremxpsng 5595 The cross product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B }
 )  =  { <. A ,  B >. } )
 
Theoremxpsn 5596 The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { A }  X.  { B } )  =  { <. A ,  B >. }
 
Theoremdfmpt 5597 Alternate definition for the maps-to notation df-mpt 3991 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 U_ x  e.  A  { <. x ,  B >. }
 
Theoremfnasrn 5598 A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 ran  ( x  e.  A  |->  <. x ,  B >. )
 
Theoremdfmptg 5599 Alternate definition for the maps-to notation df-mpt 3991 (which requires that  B be a set). (Contributed by Jim Kingdon, 9-Jan-2019.)
 |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  U_ x  e.  A  { <. x ,  B >. } )
 
Theoremfnasrng 5600 A function expressed as the range of another function. (Contributed by Jim Kingdon, 9-Jan-2019.)
 |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  =  ran  ( x  e.  A  |->  <. x ,  B >. ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >