HomeHome Intuitionistic Logic Explorer
Theorem List (p. 56 of 106)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremriotav 5501 An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
 |-  ( iota_ x  e.  _V  ph )  =  ( iota
 x ph )
 
Theoremriotauni 5502 Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  =  U. { x  e.  A  |  ph } )
 
Theoremnfriota1 5503* The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x ( iota_ x  e.  A  ph )
 
Theoremnfriotadxy 5504* Deduction version of nfriota 5505. (Contributed by Jim Kingdon, 12-Jan-2019.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/_ x (
 iota_ y  e.  A  ps ) )
 
Theoremnfriota 5505* A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
 |- 
 F/ x ph   &    |-  F/_ x A   =>    |-  F/_ x ( iota_ y  e.  A  ph )
 
Theoremcbvriota 5506* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
 
Theoremcbvriotav 5507* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
 
Theoremcsbriotag 5508* Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph )
 )
 
Theoremriotacl2 5509 Membership law for "the unique element in  A such that  ph."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph } )
 
Theoremriotacl 5510* Closure of restricted iota. (Contributed by NM, 21-Aug-2011.)
 |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  A )
 
Theoremriotasbc 5511 Substitution law for descriptions. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( E! x  e.  A  ph  ->  [. ( iota_ x  e.  A  ph )  /  x ]. ph )
 
Theoremriotabidva 5512* Equivalent wff's yield equal restricted class abstractions (deduction rule). (rabbidva 2565 analog.) (Contributed by NM, 17-Jan-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
 
Theoremriotabiia 5513 Equivalent wff's yield equal restricted iotas (inference rule). (rabbiia 2564 analog.) (Contributed by NM, 16-Jan-2012.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )
 
Theoremriota1 5514* Property of restricted iota. Compare iota1 4909. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota_ x  e.  A  ph )  =  x ) )
 
Theoremriota1a 5515 Property of iota. (Contributed by NM, 23-Aug-2011.)
 |-  ( ( x  e.  A  /\  E! x  e.  A  ph )  ->  ( ph  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
 
Theoremriota2df 5516* A deduction version of riota2f 5517. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/_ x B )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ( ph  /\  x  =  B ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ( ph  /\ 
 E! x  e.  A  ps )  ->  ( ch  <->  (
 iota_ x  e.  A  ps )  =  B ) )
 
Theoremriota2f 5517* This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x B   &    |-  F/ x ps   &    |-  ( x  =  B  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  ( iota_ x  e.  A  ph )  =  B ) )
 
Theoremriota2 5518* This theorem shows a condition that allows us to represent a descriptor with a class expression  B. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( ( B  e.  A  /\  E! x  e.  A  ph )  ->  ( ps  <->  ( iota_ x  e.  A  ph )  =  B ) )
 
Theoremriotaprop 5519* Properties of a restricted definite description operator. Todo (df-riota 5496 update): can some uses of riota2f 5517 be shortened with this? (Contributed by NM, 23-Nov-2013.)
 |- 
 F/ x ps   &    |-  B  =  ( iota_ x  e.  A  ph )   &    |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  ->  ( B  e.  A  /\  ps ) )
 
Theoremriota5f 5520* A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  F/_ x B )   &    |-  ( ph  ->  B  e.  A )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( ps 
 <->  x  =  B ) )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B )
 
Theoremriota5 5521* A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
 |-  ( ph  ->  B  e.  A )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  x  =  B ) )   =>    |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  B )
 
Theoremriotass2 5522* Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
 |-  ( ( ( A 
 C_  B  /\  A. x  e.  A  ( ph  ->  ps ) )  /\  ( E. x  e.  A  ph 
 /\  E! x  e.  B  ps ) )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ps ) )
 
Theoremriotass 5523* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph )
 )
 
Theoremmoriotass 5524* Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
 |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph )
 )
 
Theoremsnriota 5525 A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
 |-  ( E! x  e.  A  ph  ->  { x  e.  A  |  ph }  =  { ( iota_ x  e.  A  ph ) }
 )
 
Theoremeusvobj2 5526* Specify the same property in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( E! x E. y  e.  A  x  =  B  ->  ( E. y  e.  A  x  =  B  <->  A. y  e.  A  x  =  B )
 )
 
Theoremeusvobj1 5527* Specify the same object in two ways when class  B ( y ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  B  e.  _V   =>    |-  ( E! x E. y  e.  A  x  =  B  ->  (
 iota x E. y  e.  A  x  =  B )  =  ( iota x
 A. y  e.  A  x  =  B )
 )
 
Theoremf1ofveu 5528* There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
 
Theoremf1ocnvfv3 5529* Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  =  (
 iota_ x  e.  A  ( F `  x )  =  C ) )
 
Theoremriotaund 5530* Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.)
 |-  ( -.  E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  =  (/) )
 
Theoremacexmidlema 5531* Lemma for acexmid 5539. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( { (/) }  e.  A  -> 
 ph )
 
Theoremacexmidlemb 5532* Lemma for acexmid 5539. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( (/) 
 e.  B  ->  ph )
 
Theoremacexmidlemph 5533* Lemma for acexmid 5539. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( ph  ->  A  =  B )
 
Theoremacexmidlemab 5534* Lemma for acexmid 5539. (Contributed by Jim Kingdon, 6-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  (
 ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_
 v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
 )  =  { (/) } )  ->  -.  ph )
 
Theoremacexmidlemcase 5535* Lemma for acexmid 5539. Here we divide the proof into cases (based on the disjunction implicit in an unordered pair, not the sort of case elimination which relies on excluded middle).

The cases are (1) the choice function evaluated at  A equals  { (/) }, (2) the choice function evaluated at  B equals  (/), and (3) the choice function evaluated at  A equals 
(/) and the choice function evaluated at  B equals  { (/) }.

Because of the way we represent the choice function  y, the choice function evaluated at  A is  ( iota_ v  e.  A E. u  e.  y ( A  e.  u  /\  v  e.  u ) ) and the choice function evaluated at  B is  ( iota_ v  e.  B E. u  e.  y ( B  e.  u  /\  v  e.  u ) ). Other than the difference in notation these work just as  ( y `  A ) and  ( y `  B ) would if  y were a function as defined by df-fun 4932.

Although it isn't exactly about the division into cases, it is also convenient for this lemma to also include the step that if the choice function evaluated at  A equals  { (/) }, then  { (/) }  e.  A and likewise for  B.

(Contributed by Jim Kingdon, 7-Aug-2019.)

 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_
 v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u )
 )  =  { (/) } )
 ) )
 
Theoremacexmidlem1 5536* Lemma for acexmid 5539. List the cases identified in acexmidlemcase 5535 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
 
Theoremacexmidlem2 5537* Lemma for acexmid 5539. This builds on acexmidlem1 5536 by noting that every element of  C is inhabited.

(Note that  y is not quite a function in the df-fun 4932 sense because it uses ordered pairs as described in opthreg 4308 rather than df-op 3412).

The set  A is also found in onsucelsucexmidlem 4282.

(Contributed by Jim Kingdon, 5-Aug-2019.)

 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }   &    |-  B  =  { x  e.  { (/) ,  { (/)
 } }  |  ( x  =  { (/) }  \/  ph ) }   &    |-  C  =  { A ,  B }   =>    |-  ( A. z  e.  C  A. w  e.  z  E! v  e.  z  E. u  e.  y  (
 z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
 
Theoremacexmidlemv 5538* Lemma for acexmid 5539.

This is acexmid 5539 with additional distinct variable constraints, most notably between  ph and  x.

(Contributed by Jim Kingdon, 6-Aug-2019.)

 |- 
 E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )   =>    |-  ( ph  \/  -.  ph )
 
Theoremacexmid 5539* The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function  y provides a value when  z is inhabited (as opposed to non-empty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

(Contributed by Jim Kingdon, 4-Aug-2019.)

 |- 
 E. y A. z  e.  x  A. w  e.  z  E! v  e.  z  E. u  e.  y  ( z  e.  u  /\  v  e.  u )   =>    |-  ( ph  \/  -.  ph )
 
2.6.10  Operations
 
Syntaxco 5540 Extend class notation to include the value of an operation  F (such as + ) for two arguments  A and  B. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous.
 class  ( A F B )
 
Syntaxcoprab 5541 Extend class notation to include class abstraction (class builder) of nested ordered pairs.
 class  { <. <. x ,  y >. ,  z >.  |  ph }
 
Syntaxcmpt2 5542 Extend the definition of a class to include maps-to notation for defining an operation via a rule.
 class  ( x  e.  A ,  y  e.  B  |->  C )
 
Definitiondf-ov 5543 Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation  F and its arguments  A and  B- will be useful for proving meaningful theorems. For example, if class  F is the operation + and arguments  A and  B are 3 and 2 , the expression ( 3 + 2 ) can be proved to equal 5 . This definition is well-defined, although not very meaningful, when classes  A and/or  B are proper classes (i.e. are not sets); see ovprc1 5569 and ovprc2 5570. On the other hand, we often find uses for this definition when  F is a proper class.  F is normally equal to a class of nested ordered pairs of the form defined by df-oprab 5544. (Contributed by NM, 28-Feb-1995.)
 |-  ( A F B )  =  ( F ` 
 <. A ,  B >. )
 
Definitiondf-oprab 5544* Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally  x,  y, and  z are distinct, although the definition doesn't strictly require it. See df-ov 5543 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpt2 5664. (Contributed by NM, 12-Mar-1995.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
 <. <. x ,  y >. ,  z >.  /\  ph ) }
 
Definitiondf-mpt2 5545* Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from  x ,  y (in  A  X.  B) to  B ( x ,  y )." An extension of df-mpt 3848 for two arguments. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <.
 <. x ,  y >. ,  z >.  |  (
 ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
 
Theoremoveq 5546 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( F  =  G  ->  ( A F B )  =  ( A G B ) )
 
Theoremoveq1 5547 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( A  =  B  ->  ( A F C )  =  ( B F C ) )
 
Theoremoveq2 5548 Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  ( A  =  B  ->  ( C F A )  =  ( C F B ) )
 
Theoremoveq12 5549 Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveq1i 5550 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  A  =  B   =>    |-  ( A F C )  =  ( B F C )
 
Theoremoveq2i 5551 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.)
 |-  A  =  B   =>    |-  ( C F A )  =  ( C F B )
 
Theoremoveq12i 5552 Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A F C )  =  ( B F D )
 
Theoremoveqi 5553 Equality inference for operation value. (Contributed by NM, 24-Nov-2007.)
 |-  A  =  B   =>    |-  ( C A D )  =  ( C B D )
 
Theoremoveq123i 5554 Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
 |-  A  =  C   &    |-  B  =  D   &    |-  F  =  G   =>    |-  ( A F B )  =  ( C G D )
 
Theoremoveq1d 5555 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A F C )  =  ( B F C ) )
 
Theoremoveq2d 5556 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C F A )  =  ( C F B ) )
 
Theoremoveqd 5557 Equality deduction for operation value. (Contributed by NM, 9-Sep-2006.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C A D )  =  ( C B D ) )
 
Theoremoveq12d 5558 Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveqan12d 5559 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveqan12rd 5560 Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ps 
 /\  ph )  ->  ( A F C )  =  ( B F D ) )
 
Theoremoveq123d 5561 Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A F C )  =  ( B G D ) )
 
Theoremnfovd 5562 Deduction version of bound-variable hypothesis builder nfov 5563. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x F )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x ( A F B ) )
 
Theoremnfov 5563 Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
 |-  F/_ x A   &    |-  F/_ x F   &    |-  F/_ x B   =>    |-  F/_ x ( A F B )
 
Theoremoprabidlem 5564* Slight elaboration of exdistrfor 1697. A lemma for oprabid 5565. (Contributed by Jim Kingdon, 15-Jan-2019.)
 |-  ( E. x E. y ( x  =  z  /\  ps )  ->  E. x ( x  =  z  /\  E. y ps ) )
 
Theoremoprabid 5565 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Although this theorem would be useful with a distinct variable constraint between  x,  y, and  z, we use ax-bndl 1415 to eliminate that constraint. (Contributed by Mario Carneiro, 20-Mar-2013.)
 |-  ( <. <. x ,  y >. ,  z >.  e.  { <.
 <. x ,  y >. ,  z >.  |  ph }  <->  ph )
 
Theoremfnovex 5566 The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
 |-  ( ( F  Fn  ( C  X.  D ) 
 /\  A  e.  C  /\  B  e.  D ) 
 ->  ( A F B )  e.  _V )
 
Theoremovexg 5567 Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
 |-  ( ( A  e.  V  /\  F  e.  W  /\  B  e.  X ) 
 ->  ( A F B )  e.  _V )
 
Theoremovprc 5568 The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  dom  F   =>    |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A F B )  =  (/) )
 
Theoremovprc1 5569 The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.)
 |- 
 Rel  dom  F   =>    |-  ( -.  A  e.  _V 
 ->  ( A F B )  =  (/) )
 
Theoremovprc2 5570 The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  dom  F   =>    |-  ( -.  B  e.  _V 
 ->  ( A F B )  =  (/) )
 
Theoremcsbov123g 5571 Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( A  e.  D  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C ) )
 
Theoremcsbov12g 5572* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F [_ A  /  x ]_ C ) )
 
Theoremcsbov1g 5573* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( [_ A  /  x ]_ B F C ) )
 
Theoremcsbov2g 5574* Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B F C )  =  ( B F [_ A  /  x ]_ C ) )
 
Theoremrspceov 5575* A frequently used special case of rspc2ev 2687 for operation values. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( C  e.  A  /\  D  e.  B  /\  S  =  ( C F D ) ) 
 ->  E. x  e.  A  E. y  e.  B  S  =  ( x F y ) )
 
Theoremfnotovb 5576 Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5243. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  A  /\  D  e.  B ) 
 ->  ( ( C F D )  =  R  <->  <. C ,  D ,  R >.  e.  F ) )
 
Theoremopabbrex 5577* A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
 |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th )
 )   &    |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )   =>    |-  ( ( V  e.  _V 
 /\  E  e.  _V )  ->  { <. f ,  p >.  |  (
 f ( V W E ) p  /\  ps ) }  e.  _V )
 
Theorem0neqopab 5578 The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
 |- 
 -.  (/)  e.  { <. x ,  y >.  |  ph }
 
Theorembrabvv 5579* If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.)
 |-  ( X { <. x ,  y >.  |  ph } Y  ->  ( X  e.  _V  /\  Y  e.  _V ) )
 
Theoremdfoprab2 5580* Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  = 
 <. x ,  y >.  /\  ph ) }
 
Theoremreloprab 5581* An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
 |- 
 Rel  { <. <. x ,  y >. ,  z >.  |  ph }
 
Theoremnfoprab1 5582 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  F/_ x { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab2 5583 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
 |-  F/_ y { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab3 5584 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
 |-  F/_ z { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremnfoprab 5585* Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ w ph   =>    |-  F/_ w { <. <. x ,  y >. ,  z >.  | 
 ph }
 
Theoremoprabbid 5586* Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  F/ z ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  {
 <. <. x ,  y >. ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z >.  |  ch } )
 
Theoremoprabbidv 5587* Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  {
 <. <. x ,  y >. ,  z >.  |  ps }  =  { <. <. x ,  y >. ,  z >.  |  ch } )
 
Theoremoprabbii 5588* Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( ph  <->  ps )   =>    |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremssoprab2 5589 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 4040. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  ( A. x A. y A. z ( ph  ->  ps )  ->  { <. <. x ,  y >. ,  z >.  |  ph }  C_  {
 <. <. x ,  y >. ,  z >.  |  ps } )
 
Theoremssoprab2b 5590 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4041. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
 |-  ( { <. <. x ,  y >. ,  z >.  | 
 ph }  C_  { <. <. x ,  y >. ,  z >.  |  ps }  <->  A. x A. y A. z ( ph  ->  ps ) )
 
Theoremeqoprab2b 5591 Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4044. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( { <. <. x ,  y >. ,  z >.  | 
 ph }  =  { <.
 <. x ,  y >. ,  z >.  |  ps }  <->  A. x A. y A. z ( ph  <->  ps ) )
 
Theoremmpt2eq123 5592* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.)
 |-  ( ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq12 5593* An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( A  =  C  /\  B  =  D )  ->  ( x  e.  A ,  y  e.  B  |->  E )  =  ( x  e.  C ,  y  e.  D  |->  E ) )
 
Theoremmpt2eq123dva 5594* An equality deduction for the maps to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  E )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  C  =  F )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq123dv 5595* An equality deduction for the maps to notation. (Contributed by NM, 12-Sep-2011.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F ) )
 
Theoremmpt2eq123i 5596 An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.)
 |-  A  =  D   &    |-  B  =  E   &    |-  C  =  F   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D ,  y  e.  E  |->  F )
 
Theoremmpt2eq3dva 5597* Slightly more general equality inference for the maps to notation. (Contributed by NM, 17-Oct-2013.)
 |-  ( ( ph  /\  x  e.  A  /\  y  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D ) )
 
Theoremmpt2eq3ia 5598 An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  =  D )   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
 
Theoremnfmpt21 5599 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
 |-  F/_ x ( x  e.  A ,  y  e.  B  |->  C )
 
Theoremnfmpt22 5600 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
 |-  F/_ y ( x  e.  A ,  y  e.  B  |->  C )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10511
  Copyright terms: Public domain < Previous  Next >