ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeof1o Unicode version

Theorem hmeof1o 12478
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
hmeof1o.1  |-  X  = 
U. J
hmeof1o.2  |-  Y  = 
U. K
Assertion
Ref Expression
hmeof1o  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )

Proof of Theorem hmeof1o
StepHypRef Expression
1 hmeocn 12474 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
2 cntop1 12370 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
3 hmeof1o.1 . . . . . 6  |-  X  = 
U. J
43toptopon 12185 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
52, 4sylib 121 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
6 cntop2 12371 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
7 hmeof1o.2 . . . . . 6  |-  Y  = 
U. K
87toptopon 12185 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
96, 8sylib 121 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
105, 9jca 304 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) ) )
111, 10syl 14 . 2  |-  ( F  e.  ( J Homeo K )  ->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) ) )
12 hmeof1o2 12477 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) )  ->  F : X -1-1-onto-> Y
)
13123expia 1183 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J Homeo K )  ->  F : X -1-1-onto-> Y
) )
1411, 13mpcom 36 1  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   U.cuni 3736   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774   Topctop 12164  TopOnctopon 12177    Cn ccn 12354   Homeochmeo 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12165  df-topon 12178  df-cn 12357  df-hmeo 12470
This theorem is referenced by:  hmeoopn  12480  hmeocld  12481  hmeontr  12482  hmeoimaf1o  12483  txhmeo  12488
  Copyright terms: Public domain W3C validator