ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icnpimaex Unicode version

Theorem icnpimaex 12383
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
icnpimaex  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) )
Distinct variable groups:    x, A    x, F    x, J    x, K    x, P    x, X    x, Y

Proof of Theorem icnpimaex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpr3 989 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  ( F `  P )  e.  A
)
2 eleq2 2203 . . . 4  |-  ( y  =  A  ->  (
( F `  P
)  e.  y  <->  ( F `  P )  e.  A
) )
3 sseq2 3121 . . . . . 6  |-  ( y  =  A  ->  (
( F " x
)  C_  y  <->  ( F " x )  C_  A
) )
43anbi2d 459 . . . . 5  |-  ( y  =  A  ->  (
( P  e.  x  /\  ( F " x
)  C_  y )  <->  ( P  e.  x  /\  ( F " x ) 
C_  A ) ) )
54rexbidv 2438 . . . 4  |-  ( y  =  A  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  A ) ) )
62, 5imbi12d 233 . . 3  |-  ( y  =  A  ->  (
( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  ( ( F `
 P )  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) ) ) )
7 simpr1 987 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
8 iscnp 12371 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
98adantr 274 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
107, 9mpbid 146 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
1110simprd 113 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )
12 simpr2 988 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  A  e.  K )
136, 11, 12rspcdva 2794 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  ( ( F `  P )  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) ) )
141, 13mpd 13 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P
)  e.  A ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    C_ wss 3071   "cima 4542   -->wf 5119   ` cfv 5123  (class class class)co 5774  TopOnctopon 12180    CnP ccnp 12358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12168  df-topon 12181  df-cnp 12361
This theorem is referenced by:  iscnp4  12390  cnpnei  12391  cnptopco  12394  cncnp  12402  cnptopresti  12410  lmtopcnp  12422  txcnp  12443
  Copyright terms: Public domain W3C validator