ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imai Unicode version

Theorem imai 4711
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
imai  |-  (  _I  " A )  =  A

Proof of Theorem imai
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima3 4701 . 2  |-  (  _I  " A )  =  {
y  |  E. x
( x  e.  A  /\  <. x ,  y
>.  e.  _I  ) }
2 df-br 3794 . . . . . . . 8  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
3 vex 2605 . . . . . . . . 9  |-  y  e. 
_V
43ideq 4516 . . . . . . . 8  |-  ( x  _I  y  <->  x  =  y )
52, 4bitr3i 184 . . . . . . 7  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
65anbi2i 445 . . . . . 6  |-  ( ( x  e.  A  /\  <.
x ,  y >.  e.  _I  )  <->  ( x  e.  A  /\  x  =  y ) )
7 ancom 262 . . . . . 6  |-  ( ( x  e.  A  /\  x  =  y )  <->  ( x  =  y  /\  x  e.  A )
)
86, 7bitri 182 . . . . 5  |-  ( ( x  e.  A  /\  <.
x ,  y >.  e.  _I  )  <->  ( x  =  y  /\  x  e.  A ) )
98exbii 1537 . . . 4  |-  ( E. x ( x  e.  A  /\  <. x ,  y >.  e.  _I  ) 
<->  E. x ( x  =  y  /\  x  e.  A ) )
10 eleq1 2142 . . . . 5  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
113, 10ceqsexv 2639 . . . 4  |-  ( E. x ( x  =  y  /\  x  e.  A )  <->  y  e.  A )
129, 11bitri 182 . . 3  |-  ( E. x ( x  e.  A  /\  <. x ,  y >.  e.  _I  ) 
<->  y  e.  A )
1312abbii 2195 . 2  |-  { y  |  E. x ( x  e.  A  /\  <.
x ,  y >.  e.  _I  ) }  =  { y  |  y  e.  A }
14 abid2 2200 . 2  |-  { y  |  y  e.  A }  =  A
151, 13, 143eqtri 2106 1  |-  (  _I  " A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285   E.wex 1422    e. wcel 1434   {cab 2068   <.cop 3409   class class class wbr 3793    _I cid 4051   "cima 4374
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384
This theorem is referenced by:  rnresi  4712  cnvresid  5004  ecidsn  6219
  Copyright terms: Public domain W3C validator