ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctl Unicode version

Theorem jctl 301
Description: Inference conjoining a theorem to the left of a consequent. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
Hypothesis
Ref Expression
jctl.1  |-  ps
Assertion
Ref Expression
jctl  |-  ( ph  ->  ( ps  /\  ph ) )

Proof of Theorem jctl
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 jctl.1 . 2  |-  ps
31, 2jctil 299 1  |-  ( ph  ->  ( ps  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 105
This theorem is referenced by:  mpanl1  418  mpanlr1  424  reg2exmidlema  4287  relop  4514  nn0n0n1ge2  8369  expge1  9457  4dvdseven  10229  ndvdsp1  10244
  Copyright terms: Public domain W3C validator