ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir Unicode version

Theorem jctir 306
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1  |-  ( ph  ->  ps )
jctil.2  |-  ch
Assertion
Ref Expression
jctir  |-  ( ph  ->  ( ps  /\  ch ) )

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2  |-  ( ph  ->  ps )
2 jctil.2 . . 3  |-  ch
32a1i 9 . 2  |-  ( ph  ->  ch )
41, 3jca 300 1  |-  ( ph  ->  ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 106
This theorem is referenced by:  jctr  308  equvini  1682  funtp  4983  foimacnv  5175  respreima  5327  fpr  5377  dmtpos  5905  ssdomg  6325  archnqq  6669  recexgt0sr  7012  ige2m2fzo  9284  climeu  10273  algcvgblem  10575  qredeu  10623
  Copyright terms: Public domain W3C validator