ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recsfval Unicode version

Theorem recsfval 5964
Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
recsfval  |- recs ( F )  =  U. A
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem recsfval
StepHypRef Expression
1 df-recs 5954 . 2  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
2 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
32unieqi 3619 . 2  |-  U. A  =  U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
41, 3eqtr4i 2105 1  |- recs ( F )  =  U. A
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285   {cab 2068   A.wral 2349   E.wrex 2350   U.cuni 3609   Oncon0 4126    |` cres 4373    Fn wfn 4927   ` cfv 4932  recscrecs 5953
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-uni 3610  df-recs 5954
This theorem is referenced by:  tfrlem6  5965  tfrlem7  5966  tfrlem8  5967  tfrlem9  5968  tfrlemibfn  5977  tfrlemiubacc  5979  tfrlemi14d  5982  tfrexlem  5983
  Copyright terms: Public domain W3C validator