ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem9 Unicode version

Theorem tfrlem9 5966
Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem9  |-  ( B  e.  dom recs ( F
)  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) )
Distinct variable groups:    x, f, y, B    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem9
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eldm2g 4559 . . 3  |-  ( B  e.  dom recs ( F
)  ->  ( B  e.  dom recs ( F )  <->  E. z <. B ,  z
>.  e. recs ( F ) ) )
21ibi 169 . 2  |-  ( B  e.  dom recs ( F
)  ->  E. z <. B ,  z >.  e. recs ( F ) )
3 df-recs 5951 . . . . . 6  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
43eleq2i 2120 . . . . 5  |-  ( <. B ,  z >.  e. recs
( F )  <->  <. B , 
z >.  e.  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) } )
5 eluniab 3620 . . . . 5  |-  ( <. B ,  z >.  e. 
U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }  <->  E. f ( <. B ,  z >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) ) )
64, 5bitri 177 . . . 4  |-  ( <. B ,  z >.  e. recs
( F )  <->  E. f
( <. B ,  z
>.  e.  f  /\  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) ) )
7 fnop 5030 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  x  /\  <. B ,  z >.  e.  f )  ->  B  e.  x )
8 rspe 2387 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )  ->  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
9 tfrlem.1 . . . . . . . . . . . . . . . . . 18  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
109abeq2i 2164 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  A  <->  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
11 elssuni 3636 . . . . . . . . . . . . . . . . . 18  |-  ( f  e.  A  ->  f  C_ 
U. A )
129recsfval 5962 . . . . . . . . . . . . . . . . . 18  |- recs ( F )  =  U. A
1311, 12syl6sseqr 3020 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  A  ->  f  C_ recs
( F ) )
1410, 13sylbir 129 . . . . . . . . . . . . . . . 16  |-  ( E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) )  -> 
f  C_ recs ( F
) )
158, 14syl 14 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )  ->  f  C_ recs ( F ) )
16 fveq2 5206 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  B  ->  (
f `  y )  =  ( f `  B ) )
17 reseq2 4635 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  B  ->  (
f  |`  y )  =  ( f  |`  B ) )
1817fveq2d 5210 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  B  ->  ( F `  ( f  |`  y ) )  =  ( F `  (
f  |`  B ) ) )
1916, 18eqeq12d 2070 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  B  ->  (
( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  ( f `  B )  =  ( F `  ( f  |`  B ) ) ) )
2019rspcv 2669 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  x  ->  ( A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) )  -> 
( f `  B
)  =  ( F `
 ( f  |`  B ) ) ) )
21 fndm 5026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  Fn  x  ->  dom  f  =  x )
2221eleq2d 2123 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  Fn  x  ->  ( B  e.  dom  f  <->  B  e.  x ) )
239tfrlem7 5964 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  Fun recs ( F )
24 funssfv 5227 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( Fun recs ( F )  /\  f  C_ recs ( F )  /\  B  e. 
dom  f )  -> 
(recs ( F ) `
 B )  =  ( f `  B
) )
2523, 24mp3an1 1230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f  C_ recs ( F
)  /\  B  e.  dom  f )  ->  (recs ( F ) `  B
)  =  ( f `
 B ) )
2625adantrl 455 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f  C_ recs ( F
)  /\  ( (
f  Fn  x  /\  x  e.  On )  /\  B  e.  dom  f ) )  -> 
(recs ( F ) `
 B )  =  ( f `  B
) )
2721eleq1d 2122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f  Fn  x  ->  ( dom  f  e.  On  <->  x  e.  On ) )
28 onelss 4152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( dom  f  e.  On  ->  ( B  e.  dom  f  ->  B  C_  dom  f ) )
2927, 28syl6bir 157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f  Fn  x  ->  (
x  e.  On  ->  ( B  e.  dom  f  ->  B  C_  dom  f ) ) )
3029imp31 247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( f  Fn  x  /\  x  e.  On )  /\  B  e.  dom  f )  ->  B  C_ 
dom  f )
31 fun2ssres 4971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( Fun recs ( F )  /\  f  C_ recs ( F )  /\  B  C_  dom  f )  ->  (recs ( F )  |`  B )  =  ( f  |`  B ) )
3231fveq2d 5210 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( Fun recs ( F )  /\  f  C_ recs ( F )  /\  B  C_  dom  f )  ->  ( F `  (recs ( F )  |`  B ) )  =  ( F `
 ( f  |`  B ) ) )
3323, 32mp3an1 1230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f  C_ recs ( F
)  /\  B  C_  dom  f )  ->  ( F `  (recs ( F )  |`  B ) )  =  ( F `
 ( f  |`  B ) ) )
3430, 33sylan2 274 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f  C_ recs ( F
)  /\  ( (
f  Fn  x  /\  x  e.  On )  /\  B  e.  dom  f ) )  -> 
( F `  (recs ( F )  |`  B ) )  =  ( F `
 ( f  |`  B ) ) )
3526, 34eqeq12d 2070 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  C_ recs ( F
)  /\  ( (
f  Fn  x  /\  x  e.  On )  /\  B  e.  dom  f ) )  -> 
( (recs ( F ) `  B )  =  ( F `  (recs ( F )  |`  B ) )  <->  ( f `  B )  =  ( F `  ( f  |`  B ) ) ) )
3635exbiri 368 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f 
C_ recs ( F )  ->  ( ( ( f  Fn  x  /\  x  e.  On )  /\  B  e.  dom  f )  ->  (
( f `  B
)  =  ( F `
 ( f  |`  B ) )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) ) )
3736com3l 79 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( f  Fn  x  /\  x  e.  On )  /\  B  e.  dom  f )  ->  (
( f `  B
)  =  ( F `
 ( f  |`  B ) )  -> 
( f  C_ recs ( F )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) )
3837exp31 350 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  Fn  x  ->  (
x  e.  On  ->  ( B  e.  dom  f  ->  ( ( f `  B )  =  ( F `  ( f  |`  B ) )  -> 
( f  C_ recs ( F )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) ) ) )
3938com34 81 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  Fn  x  ->  (
x  e.  On  ->  ( ( f `  B
)  =  ( F `
 ( f  |`  B ) )  -> 
( B  e.  dom  f  ->  ( f  C_ recs ( F )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) ) ) )
4039com24 85 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  Fn  x  ->  ( B  e.  dom  f  -> 
( ( f `  B )  =  ( F `  ( f  |`  B ) )  -> 
( x  e.  On  ->  ( f  C_ recs ( F )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) ) ) )
4122, 40sylbird 163 . . . . . . . . . . . . . . . . . . 19  |-  ( f  Fn  x  ->  ( B  e.  x  ->  ( ( f `  B
)  =  ( F `
 ( f  |`  B ) )  -> 
( x  e.  On  ->  ( f  C_ recs ( F )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) ) ) )
4241com3l 79 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  x  ->  (
( f `  B
)  =  ( F `
 ( f  |`  B ) )  -> 
( f  Fn  x  ->  ( x  e.  On  ->  ( f  C_ recs ( F )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) ) ) )
4320, 42syld 44 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  x  ->  ( A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) )  -> 
( f  Fn  x  ->  ( x  e.  On  ->  ( f  C_ recs ( F )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) ) ) )
4443com24 85 . . . . . . . . . . . . . . . 16  |-  ( B  e.  x  ->  (
x  e.  On  ->  ( f  Fn  x  -> 
( A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )  -> 
( f  C_ recs ( F )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) ) ) )
4544imp4d 338 . . . . . . . . . . . . . . 15  |-  ( B  e.  x  ->  (
( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )  ->  ( f  C_ recs
( F )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) ) )
4615, 45mpdi 42 . . . . . . . . . . . . . 14  |-  ( B  e.  x  ->  (
( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) )
477, 46syl 14 . . . . . . . . . . . . 13  |-  ( ( f  Fn  x  /\  <. B ,  z >.  e.  f )  ->  (
( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) )
4847exp4d 355 . . . . . . . . . . . 12  |-  ( ( f  Fn  x  /\  <. B ,  z >.  e.  f )  ->  (
x  e.  On  ->  ( f  Fn  x  -> 
( A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) ) ) )
4948ex 112 . . . . . . . . . . 11  |-  ( f  Fn  x  ->  ( <. B ,  z >.  e.  f  ->  ( x  e.  On  ->  (
f  Fn  x  -> 
( A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) ) ) ) )
5049com4r 84 . . . . . . . . . 10  |-  ( f  Fn  x  ->  (
f  Fn  x  -> 
( <. B ,  z
>.  e.  f  ->  (
x  e.  On  ->  ( A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) ) ) ) )
5150pm2.43i 47 . . . . . . . . 9  |-  ( f  Fn  x  ->  ( <. B ,  z >.  e.  f  ->  ( x  e.  On  ->  ( A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) ) ) )
5251com3l 79 . . . . . . . 8  |-  ( <. B ,  z >.  e.  f  ->  ( x  e.  On  ->  ( f  Fn  x  ->  ( A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  y
) )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) ) ) ) )
5352imp4a 335 . . . . . . 7  |-  ( <. B ,  z >.  e.  f  ->  ( x  e.  On  ->  ( (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) ) )
5453rexlimdv 2449 . . . . . 6  |-  ( <. B ,  z >.  e.  f  ->  ( E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) )
5554imp 119 . . . . 5  |-  ( (
<. B ,  z >.  e.  f  /\  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) )
5655exlimiv 1505 . . . 4  |-  ( E. f ( <. B , 
z >.  e.  f  /\  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) )  ->  (recs ( F ) `  B )  =  ( F `  (recs ( F )  |`  B ) ) )
576, 56sylbi 118 . . 3  |-  ( <. B ,  z >.  e. recs
( F )  -> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) )
5857exlimiv 1505 . 2  |-  ( E. z <. B ,  z
>.  e. recs ( F )  ->  (recs ( F ) `  B )  =  ( F `  (recs ( F )  |`  B ) ) )
592, 58syl 14 1  |-  ( B  e.  dom recs ( F
)  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    /\ w3a 896    = wceq 1259   E.wex 1397    e. wcel 1409   {cab 2042   A.wral 2323   E.wrex 2324    C_ wss 2945   <.cop 3406   U.cuni 3608   Oncon0 4128   dom cdm 4373    |` cres 4375   Fun wfun 4924    Fn wfn 4925   ` cfv 4930  recscrecs 5950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-id 4058  df-iord 4131  df-on 4133  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-res 4385  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938  df-recs 5951
This theorem is referenced by:  tfr2a  5967  tfrlemiubacc  5975
  Copyright terms: Public domain W3C validator