ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restopnb Unicode version

Theorem restopnb 12350
Description: If  B is an open subset of the subspace base set  A, then any subset of  B is open iff it is open in  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopnb  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  C  e.  ( Jt  A ) ) )

Proof of Theorem restopnb
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simpr3 989 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  C_  B )
2 simpr2 988 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  B  C_  A )
31, 2sstrd 3107 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  C_  A )
4 df-ss 3084 . . . . . 6  |-  ( C 
C_  A  <->  ( C  i^i  A )  =  C )
53, 4sylib 121 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  i^i  A )  =  C )
65eqcomd 2145 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  =  ( C  i^i  A ) )
7 ineq1 3270 . . . . . 6  |-  ( v  =  C  ->  (
v  i^i  A )  =  ( C  i^i  A ) )
87rspceeqv 2807 . . . . 5  |-  ( ( C  e.  J  /\  C  =  ( C  i^i  A ) )  ->  E. v  e.  J  C  =  ( v  i^i  A ) )
98expcom 115 . . . 4  |-  ( C  =  ( C  i^i  A )  ->  ( C  e.  J  ->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
106, 9syl 14 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  ->  E. v  e.  J  C  =  ( v  i^i 
A ) ) )
11 inass 3286 . . . . . 6  |-  ( ( v  i^i  A )  i^i  B )  =  ( v  i^i  ( A  i^i  B ) )
12 simprr 521 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  =  ( v  i^i 
A ) )
1312ineq1d 3276 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  ( C  i^i  B )  =  ( ( v  i^i 
A )  i^i  B
) )
14 simplr3 1025 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  C  C_  B )
15 df-ss 3084 . . . . . . . . 9  |-  ( C 
C_  B  <->  ( C  i^i  B )  =  C )
1614, 15sylib 121 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( C  i^i  B
)  =  C )
1716adantrr 470 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  ( C  i^i  B )  =  C )
1813, 17eqtr3d 2174 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
( v  i^i  A
)  i^i  B )  =  C )
19 simplr2 1024 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  B  C_  A )
20 sseqin2 3295 . . . . . . . . 9  |-  ( B 
C_  A  <->  ( A  i^i  B )  =  B )
2119, 20sylib 121 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( A  i^i  B
)  =  B )
2221ineq2d 3277 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( v  i^i  ( A  i^i  B ) )  =  ( v  i^i 
B ) )
2322adantrr 470 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
v  i^i  ( A  i^i  B ) )  =  ( v  i^i  B
) )
2411, 18, 233eqtr3a 2196 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  =  ( v  i^i 
B ) )
25 simplll 522 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  J  e.  Top )
26 simprl 520 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  v  e.  J )
27 simplr1 1023 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  B  e.  J )
28 inopn 12170 . . . . . 6  |-  ( ( J  e.  Top  /\  v  e.  J  /\  B  e.  J )  ->  ( v  i^i  B
)  e.  J )
2925, 26, 27, 28syl3anc 1216 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
v  i^i  B )  e.  J )
3024, 29eqeltrd 2216 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  e.  J )
3130rexlimdvaa 2550 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( E. v  e.  J  C  =  ( v  i^i  A )  ->  C  e.  J ) )
3210, 31impbid 128 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
33 elrest 12127 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( C  e.  ( Jt  A )  <->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
3433adantr 274 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  ( Jt  A
)  <->  E. v  e.  J  C  =  ( v  i^i  A ) ) )
3532, 34bitr4d 190 1  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  C  e.  ( Jt  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417    i^i cin 3070    C_ wss 3071  (class class class)co 5774   ↾t crest 12120   Topctop 12164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-rest 12122  df-top 12165
This theorem is referenced by:  restopn2  12352
  Copyright terms: Public domain W3C validator