ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftlem Unicode version

Theorem shftlem 9645
Description: Two ways to write a shifted set  ( B  +  A ). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 2332 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  B }  =  {
x  |  ( x  e.  CC  /\  (
x  -  A )  e.  B ) }
2 npcan 7283 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
32ancoms 259 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
43eqcomd 2061 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
5 oveq1 5547 . . . . . . . . . 10  |-  ( y  =  ( x  -  A )  ->  (
y  +  A )  =  ( ( x  -  A )  +  A ) )
65eqeq2d 2067 . . . . . . . . 9  |-  ( y  =  ( x  -  A )  ->  (
x  =  ( y  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
76rspcev 2673 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  B  /\  x  =  ( (
x  -  A )  +  A ) )  ->  E. y  e.  B  x  =  ( y  +  A ) )
87expcom 113 . . . . . . 7  |-  ( x  =  ( ( x  -  A )  +  A )  ->  (
( x  -  A
)  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
94, 8syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
109expimpd 349 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
1110adantr 265 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A
) ) )
12 ssel2 2968 . . . . . . . . . 10  |-  ( ( B  C_  CC  /\  y  e.  B )  ->  y  e.  CC )
13 addcl 7064 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( y  +  A
)  e.  CC )
1412, 13sylan 271 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( y  +  A )  e.  CC )
15 pncan 7280 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A
)  =  y )
1612, 15sylan 271 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  =  y )
17 simplr 490 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  y  e.  B
)
1816, 17eqeltrd 2130 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  e.  B
)
1914, 18jca 294 . . . . . . . 8  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A )  e.  B ) )
2019ancoms 259 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  C_  CC  /\  y  e.  B )
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
2120anassrs 386 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
22 eleq1 2116 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
x  e.  CC  <->  ( y  +  A )  e.  CC ) )
23 oveq1 5547 . . . . . . . 8  |-  ( x  =  ( y  +  A )  ->  (
x  -  A )  =  ( ( y  +  A )  -  A ) )
2423eleq1d 2122 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
( x  -  A
)  e.  B  <->  ( (
y  +  A )  -  A )  e.  B ) )
2522, 24anbi12d 450 . . . . . 6  |-  ( x  =  ( y  +  A )  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  <-> 
( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A
)  e.  B ) ) )
2621, 25syl5ibrcom 150 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( x  =  ( y  +  A )  ->  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) ) )
2726rexlimdva 2450 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( E. y  e.  B  x  =  ( y  +  A )  ->  ( x  e.  CC  /\  ( x  -  A )  e.  B ) ) )
2811, 27impbid 124 . . 3  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  <->  E. y  e.  B  x  =  ( y  +  A
) ) )
2928abbidv 2171 . 2  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  |  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
301, 29syl5eq 2100 1  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409   {cab 2042   E.wrex 2324   {crab 2327    C_ wss 2945  (class class class)co 5540   CCcc 6945    + caddc 6950    - cmin 7245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290  ax-resscn 7034  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-sub 7247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator