ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftlem Unicode version

Theorem shftlem 10588
Description: Two ways to write a shifted set  ( B  +  A ). (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftlem  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem shftlem
StepHypRef Expression
1 df-rab 2425 . 2  |-  { x  e.  CC  |  ( x  -  A )  e.  B }  =  {
x  |  ( x  e.  CC  /\  (
x  -  A )  e.  B ) }
2 npcan 7971 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
32ancoms 266 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
43eqcomd 2145 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
5 oveq1 5781 . . . . . . . . . 10  |-  ( y  =  ( x  -  A )  ->  (
y  +  A )  =  ( ( x  -  A )  +  A ) )
65eqeq2d 2151 . . . . . . . . 9  |-  ( y  =  ( x  -  A )  ->  (
x  =  ( y  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
76rspcev 2789 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  B  /\  x  =  ( (
x  -  A )  +  A ) )  ->  E. y  e.  B  x  =  ( y  +  A ) )
87expcom 115 . . . . . . 7  |-  ( x  =  ( ( x  -  A )  +  A )  ->  (
( x  -  A
)  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
94, 8syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  e.  B  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
109expimpd 360 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A ) ) )
1110adantr 274 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  ->  E. y  e.  B  x  =  ( y  +  A
) ) )
12 ssel2 3092 . . . . . . . . . 10  |-  ( ( B  C_  CC  /\  y  e.  B )  ->  y  e.  CC )
13 addcl 7745 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( y  +  A
)  e.  CC )
1412, 13sylan 281 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( y  +  A )  e.  CC )
15 pncan 7968 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A
)  =  y )
1612, 15sylan 281 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  =  y )
17 simplr 519 . . . . . . . . . 10  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  y  e.  B
)
1816, 17eqeltrd 2216 . . . . . . . . 9  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  -  A )  e.  B
)
1914, 18jca 304 . . . . . . . 8  |-  ( ( ( B  C_  CC  /\  y  e.  B )  /\  A  e.  CC )  ->  ( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A )  e.  B ) )
2019ancoms 266 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  C_  CC  /\  y  e.  B )
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
2120anassrs 397 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( (
y  +  A )  e.  CC  /\  (
( y  +  A
)  -  A )  e.  B ) )
22 eleq1 2202 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
x  e.  CC  <->  ( y  +  A )  e.  CC ) )
23 oveq1 5781 . . . . . . . 8  |-  ( x  =  ( y  +  A )  ->  (
x  -  A )  =  ( ( y  +  A )  -  A ) )
2423eleq1d 2208 . . . . . . 7  |-  ( x  =  ( y  +  A )  ->  (
( x  -  A
)  e.  B  <->  ( (
y  +  A )  -  A )  e.  B ) )
2522, 24anbi12d 464 . . . . . 6  |-  ( x  =  ( y  +  A )  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  B )  <-> 
( ( y  +  A )  e.  CC  /\  ( ( y  +  A )  -  A
)  e.  B ) ) )
2621, 25syl5ibrcom 156 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  C_  CC )  /\  y  e.  B
)  ->  ( x  =  ( y  +  A )  ->  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) ) )
2726rexlimdva 2549 . . . 4  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( E. y  e.  B  x  =  ( y  +  A )  ->  ( x  e.  CC  /\  ( x  -  A )  e.  B ) ) )
2811, 27impbid 128 . . 3  |-  ( ( A  e.  CC  /\  B  C_  CC )  -> 
( ( x  e.  CC  /\  ( x  -  A )  e.  B )  <->  E. y  e.  B  x  =  ( y  +  A
) ) )
2928abbidv 2257 . 2  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  |  (
x  e.  CC  /\  ( x  -  A
)  e.  B ) }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
301, 29syl5eq 2184 1  |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e.  CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {cab 2125   E.wrex 2417   {crab 2420    C_ wss 3071  (class class class)co 5774   CCcc 7618    + caddc 7623    - cmin 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-resscn 7712  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator