ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotr Unicode version

Theorem sotr 4102
Description: A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
sotr  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )

Proof of Theorem sotr
StepHypRef Expression
1 sopo 4097 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 potr 4092 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )
31, 2sylan 277 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    e. wcel 1434   class class class wbr 3806    Po wpo 4078    Or wor 4079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2613  df-un 2987  df-sn 3423  df-pr 3424  df-op 3426  df-br 3807  df-po 4080  df-iso 4081
This theorem is referenced by:  sotri  4771  cauappcvgprlemdisj  6980
  Copyright terms: Public domain W3C validator