Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucidg Unicode version

Theorem sucidg 4179
 Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
Assertion
Ref Expression
sucidg

Proof of Theorem sucidg
StepHypRef Expression
1 eqid 2082 . . 3
21olci 684 . 2
3 elsucg 4167 . 2
42, 3mpbiri 166 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 662   wceq 1285   wcel 1434   csuc 4128 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-sn 3412  df-suc 4134 This theorem is referenced by:  sucid  4180  nsuceq0g  4181  trsuc  4185  sucssel  4187  ordsucg  4254  sucunielr  4262  suc11g  4308  nlimsucg  4317  peano2b  4363  frecsuclem  6055  phplem4dom  6397  phplem4on  6402  dif1en  6414  fin0  6419  fin0or  6420  bj-peano4  10908
 Copyright terms: Public domain W3C validator