ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembex Unicode version

Theorem tfr1onlembex 6016
Description: Lemma for tfr1on 6021. The set  B exists. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlembex  |-  ( ph  ->  B  e.  _V )
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z    B, g, h, w, z    D, h, z    h, G, w, z, f, y, x    g, X, z
Allowed substitution hints:    ph( y, w)    A( y, w)    B( x, y, f)    D( y, w)    F( x, y, z, w, f, g, h)    G( g)    X( y, w, h)

Proof of Theorem tfr1onlembex
StepHypRef Expression
1 tfr1on.f . . . 4  |-  F  = recs ( G )
2 tfr1on.g . . . 4  |-  ( ph  ->  Fun  G )
3 tfr1on.x . . . 4  |-  ( ph  ->  Ord  X )
4 tfr1on.ex . . . 4  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
5 tfr1onlemsucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
6 tfr1onlembacc.3 . . . 4  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
7 tfr1onlembacc.u . . . 4  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
8 tfr1onlembacc.4 . . . 4  |-  ( ph  ->  D  e.  X )
9 tfr1onlembacc.5 . . . 4  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9tfr1onlembfn 6015 . . 3  |-  ( ph  ->  U. B  Fn  D
)
11 fnex 5437 . . 3  |-  ( ( U. B  Fn  D  /\  D  e.  X
)  ->  U. B  e. 
_V )
1210, 8, 11syl2anc 403 . 2  |-  ( ph  ->  U. B  e.  _V )
13 uniexb 4252 . 2  |-  ( B  e.  _V  <->  U. B  e. 
_V )
1412, 13sylibr 132 1  |-  ( ph  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285   E.wex 1422    e. wcel 1434   {cab 2069   A.wral 2353   E.wrex 2354   _Vcvv 2611    u. cun 2981   {csn 3417   <.cop 3420   U.cuni 3622   Ord word 4146   suc csuc 4149    |` cres 4394   Fun wfun 4947    Fn wfn 4948   ` cfv 4953  recscrecs 5975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-iord 4150  df-on 4152  df-suc 4155  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-recs 5976
This theorem is referenced by:  tfr1onlemex  6018
  Copyright terms: Public domain W3C validator