ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1d Unicode version

Theorem tfri1d 6232
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that  G is defined "everywhere", which is stated here as  ( G `  x )  e.  _V. Alternately,  A. x  e.  On A. f ( f  Fn  x  -> 
f  e.  dom  G
) would suffice.

Given a function  G satisfying that condition, we define a class  A of all "acceptable" functions. The final function we're interested in is the union 
F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1d.1  |-  F  = recs ( G )
tfri1d.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri1d  |-  ( ph  ->  F  Fn  On )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem tfri1d
Dummy variables  f  g  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . . . 6  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }
21tfrlem3 6208 . . . . 5  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
3 tfri1d.2 . . . . 5  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
42, 3tfrlemi14d 6230 . . . 4  |-  ( ph  ->  dom recs ( G )  =  On )
5 eqid 2139 . . . . 5  |-  { w  |  E. y  e.  On  ( w  Fn  y  /\  A. z  e.  y  ( w `  z
)  =  ( G `
 ( w  |`  z ) ) ) }  =  { w  |  E. y  e.  On  ( w  Fn  y  /\  A. z  e.  y  ( w `  z
)  =  ( G `
 ( w  |`  z ) ) ) }
65tfrlem7 6214 . . . 4  |-  Fun recs ( G )
74, 6jctil 310 . . 3  |-  ( ph  ->  ( Fun recs ( G
)  /\  dom recs ( G )  =  On ) )
8 df-fn 5126 . . 3  |-  (recs ( G )  Fn  On  <->  ( Fun recs ( G )  /\  dom recs ( G
)  =  On ) )
97, 8sylibr 133 . 2  |-  ( ph  -> recs ( G )  Fn  On )
10 tfri1d.1 . . 3  |-  F  = recs ( G )
1110fneq1i 5217 . 2  |-  ( F  Fn  On  <-> recs ( G
)  Fn  On )
129, 11sylibr 133 1  |-  ( ph  ->  F  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1329    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   _Vcvv 2686   Oncon0 4285   dom cdm 4539    |` cres 4541   Fun wfun 5117    Fn wfn 5118   ` cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202
This theorem is referenced by:  tfri2d  6233  tfri1  6262  rdgifnon  6276  rdgifnon2  6277  frecfnom  6298
  Copyright terms: Public domain W3C validator