ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  we0 Unicode version

Theorem we0 4124
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
we0  |-  R  We  (/)

Proof of Theorem we0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0 4114 . 2  |-  R  Fr  (/)
2 ral0 3350 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( ( x R y  /\  y R z )  ->  x R z )
3 df-wetr 4097 . 2  |-  ( R  We  (/)  <->  ( R  Fr  (/) 
/\  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( ( x R y  /\  y R z )  ->  x R z ) ) )
41, 2, 3mpbir2an 884 1  |-  R  We  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wral 2349   (/)c0 3258   class class class wbr 3793    Fr wfr 4091    We wwe 4093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-dif 2976  df-in 2980  df-ss 2987  df-nul 3259  df-frfor 4094  df-frind 4095  df-wetr 4097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator