![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2an | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 |
![]() ![]() |
mpbir2an.2 |
![]() ![]() |
mpbiran2an.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbir2an |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 |
. 2
![]() ![]() | |
2 | mpbir2an.1 |
. . 3
![]() ![]() | |
3 | mpbiran2an.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbiran 882 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbir 144 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3pm3.2i 1117 euequ1 2037 eqssi 3016 elini 3157 dtruarb 3970 opnzi 3998 so0 4089 we0 4124 ord0 4154 ordon 4238 onsucelsucexmidlem1 4279 regexmidlemm 4283 ordpwsucexmid 4321 reg3exmidlemwe 4329 ordom 4355 funi 4962 funcnvsn 4975 funinsn 4979 fnresi 5047 fn0 5049 f0 5111 fconst 5113 f10 5191 f1o0 5194 f1oi 5195 f1osn 5197 isoid 5481 acexmidlem2 5540 fo1st 5815 fo2nd 5816 iordsmo 5946 tfrlem7 5966 tfrexlem 5983 1domsn 6363 1pi 6567 prarloclemcalc 6754 ltsopr 6848 ltsosr 7003 axicn 7093 nnindnn 7121 ltso 7256 negiso 8100 nnind 8122 0z 8443 dfuzi 8538 cnref1o 8814 elrpii 8818 xrltso 8947 0e0icopnf 9078 0e0iccpnf 9079 fldiv4p1lem1div2 9387 expcl2lemap 9585 expclzaplem 9597 expge0 9609 expge1 9610 fclim 10271 halfleoddlt 10438 2prm 10653 3prm 10654 ex-fl 10714 bj-indint 10884 bj-omord 10913 |
Copyright terms: Public domain | W3C validator |