ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddass2 Unicode version

Theorem xaddass2 9653
Description: Associativity of extended real addition. See xaddass 9652 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )

Proof of Theorem xaddass2
StepHypRef Expression
1 simp1l 1005 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  A  e.  RR* )
2 xnegcl 9615 . . . . . 6  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
31, 2syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  e.  RR* )
4 simp1r 1006 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  A  =/= +oo )
5 pnfxr 7818 . . . . . . . . 9  |- +oo  e.  RR*
6 xneg11 9617 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e A  =  -e +oo  <->  A  = +oo ) )
71, 5, 6sylancl 409 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A  =  -e +oo 
<->  A  = +oo )
)
87necon3bid 2349 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A  =/=  -e +oo 
<->  A  =/= +oo )
)
94, 8mpbird 166 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  =/=  -e +oo )
10 xnegpnf 9611 . . . . . . 7  |-  -e +oo  = -oo
1110a1i 9 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e +oo  = -oo )
129, 11neeqtrd 2336 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e A  =/= -oo )
13 simp2l 1007 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  B  e.  RR* )
14 xnegcl 9615 . . . . . 6  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
1513, 14syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  e.  RR* )
16 simp2r 1008 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  B  =/= +oo )
17 xneg11 9617 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e B  =  -e +oo  <->  B  = +oo ) )
1813, 5, 17sylancl 409 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
B  =  -e +oo 
<->  B  = +oo )
)
1918necon3bid 2349 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
B  =/=  -e +oo 
<->  B  =/= +oo )
)
2016, 19mpbird 166 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  =/=  -e +oo )
2120, 11neeqtrd 2336 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e B  =/= -oo )
22 simp3l 1009 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  C  e.  RR* )
23 xnegcl 9615 . . . . . 6  |-  ( C  e.  RR*  ->  -e
C  e.  RR* )
2422, 23syl 14 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  e.  RR* )
25 simp3r 1010 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  C  =/= +oo )
26 xneg11 9617 . . . . . . . . 9  |-  ( ( C  e.  RR*  /\ +oo  e.  RR* )  ->  (  -e C  =  -e +oo  <->  C  = +oo ) )
2722, 5, 26sylancl 409 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
C  =  -e +oo 
<->  C  = +oo )
)
2827necon3bid 2349 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
C  =/=  -e +oo 
<->  C  =/= +oo )
)
2925, 28mpbird 166 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  =/=  -e +oo )
3029, 11neeqtrd 2336 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e C  =/= -oo )
31 xaddass 9652 . . . . 5  |-  ( ( (  -e A  e.  RR*  /\  -e
A  =/= -oo )  /\  (  -e B  e.  RR*  /\  -e
B  =/= -oo )  /\  (  -e C  e.  RR*  /\  -e
C  =/= -oo )
)  ->  ( (  -e A +e  -e B ) +e  -e C )  =  (  -e A +e
(  -e B +e  -e C ) ) )
323, 12, 15, 21, 24, 30, 31syl222anc 1232 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( (  -e A +e  -e B ) +e  -e C )  =  (  -e A +e
(  -e B +e  -e C ) ) )
33 xnegdi 9651 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -e
( A +e
B )  =  ( 
-e A +e  -e B ) )
341, 13, 33syl2anc 408 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( A +e B )  =  (  -e A +e  -e B ) )
3534oveq1d 5789 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( A +e
B ) +e  -e C )  =  ( (  -e
A +e  -e B ) +e  -e C ) )
36 xnegdi 9651 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  -e
( B +e
C )  =  ( 
-e B +e  -e C ) )
3713, 22, 36syl2anc 408 . . . . 5  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( B +e C )  =  (  -e B +e  -e C ) )
3837oveq2d 5790 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
A +e  -e ( B +e C ) )  =  (  -e
A +e ( 
-e B +e  -e C ) ) )
3932, 35, 383eqtr4d 2182 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( A +e
B ) +e  -e C )  =  (  -e A +e  -e
( B +e
C ) ) )
40 xaddcl 9643 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
411, 13, 40syl2anc 408 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( A +e B )  e.  RR* )
42 xnegdi 9651 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR* )  -> 
-e ( ( A +e B ) +e C )  =  (  -e ( A +e B ) +e  -e C ) )
4341, 22, 42syl2anc 408 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( ( A +e
B ) +e
C )  =  ( 
-e ( A +e B ) +e  -e
C ) )
44 xaddcl 9643 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
4513, 22, 44syl2anc 408 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( B +e C )  e.  RR* )
46 xnegdi 9651 . . . 4  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  -e
( A +e
( B +e
C ) )  =  (  -e A +e  -e
( B +e
C ) ) )
471, 45, 46syl2anc 408 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( A +e ( B +e C ) )  =  ( 
-e A +e  -e ( B +e C ) ) )
4839, 43, 473eqtr4d 2182 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  -e ( ( A +e
B ) +e
C )  =  -e ( A +e ( B +e C ) ) )
49 xaddcl 9643 . . . 4  |-  ( ( ( A +e
B )  e.  RR*  /\  C  e.  RR* )  ->  ( ( A +e B ) +e C )  e. 
RR* )
5041, 22, 49syl2anc 408 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  e.  RR* )
51 xaddcl 9643 . . . 4  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  ( A +e ( B +e C ) )  e.  RR* )
521, 45, 51syl2anc 408 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( A +e ( B +e C ) )  e.  RR* )
53 xneg11 9617 . . 3  |-  ( ( ( ( A +e B ) +e C )  e. 
RR*  /\  ( A +e ( B +e C ) )  e.  RR* )  ->  (  -e ( ( A +e
B ) +e
C )  =  -e ( A +e ( B +e C ) )  <-> 
( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) ) )
5450, 52, 53syl2anc 408 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  (  -e
( ( A +e B ) +e C )  = 
-e ( A +e ( B +e C ) )  <->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) ) )
5548, 54mpbid 146 1  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2308  (class class class)co 5774   +oocpnf 7797   -oocmnf 7798   RR*cxr 7799    -ecxne 9556   +ecxad 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-sub 7935  df-neg 7936  df-xneg 9559  df-xadd 9560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator