Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3g GIF version

Theorem 3eqtr3g 2111
 Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.)
Hypotheses
Ref Expression
3eqtr3g.1 (𝜑𝐴 = 𝐵)
3eqtr3g.2 𝐴 = 𝐶
3eqtr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3eqtr3g (𝜑𝐶 = 𝐷)

Proof of Theorem 3eqtr3g
StepHypRef Expression
1 3eqtr3g.2 . . 3 𝐴 = 𝐶
2 3eqtr3g.1 . . 3 (𝜑𝐴 = 𝐵)
31, 2syl5eqr 2102 . 2 (𝜑𝐶 = 𝐵)
4 3eqtr3g.3 . 2 𝐵 = 𝐷
53, 4syl6eq 2104 1 (𝜑𝐶 = 𝐷)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1259 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-17 1435  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-cleq 2049 This theorem is referenced by:  csbnest1g  2929  dfopg  3575  cores2  4861  funcoeqres  5185  dftpos2  5907  ine0  7463
 Copyright terms: Public domain W3C validator