ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslnid GIF version

Theorem setsslnid 12013
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypotheses
Ref Expression
setsslid.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
setsslnid.n (𝐸‘ndx) ≠ 𝐷
setsslnid.d 𝐷 ∈ ℕ
Assertion
Ref Expression
setsslnid ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))

Proof of Theorem setsslnid
StepHypRef Expression
1 setsslnid.d . . . . 5 𝐷 ∈ ℕ
2 setsresg 12000 . . . . 5 ((𝑊𝐴𝐷 ∈ ℕ ∧ 𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
31, 2mp3an2 1303 . . . 4 ((𝑊𝐴𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
43fveq1d 5423 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
5 setsslid.e . . . . . . 7 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
65simpri 112 . . . . . 6 (𝐸‘ndx) ∈ ℕ
76elexi 2698 . . . . 5 (𝐸‘ndx) ∈ V
8 setsslnid.n . . . . 5 (𝐸‘ndx) ≠ 𝐷
9 eldifsn 3650 . . . . 5 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
107, 8, 9mpbir2an 926 . . . 4 (𝐸‘ndx) ∈ (V ∖ {𝐷})
11 fvres 5445 . . . 4 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1210, 11ax-mp 5 . . 3 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
13 fvres 5445 . . . 4 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1410, 13ax-mp 5 . . 3 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
154, 12, 143eqtr3g 2195 . 2 ((𝑊𝐴𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
165simpli 110 . . 3 𝐸 = Slot (𝐸‘ndx)
17 setsex 11994 . . . 4 ((𝑊𝐴𝐷 ∈ ℕ ∧ 𝐶𝑉) → (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V)
181, 17mp3an2 1303 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V)
196a1i 9 . . 3 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ ℕ)
2016, 18, 19strnfvnd 11982 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
21 simpl 108 . . 3 ((𝑊𝐴𝐶𝑉) → 𝑊𝐴)
2216, 21, 19strnfvnd 11982 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
2315, 20, 223eqtr4rd 2183 1 ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wne 2308  Vcvv 2686  cdif 3068  {csn 3527  cop 3530  cres 4541  cfv 5123  (class class class)co 5774  cn 8723  ndxcnx 11959   sSet csts 11960  Slot cslot 11961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-slot 11966  df-sets 11969
This theorem is referenced by:  setsmsbasg  12651  setsmsdsg  12652
  Copyright terms: Public domain W3C validator