![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcan2ad | GIF version |
Description: Cancelling a term on the right-hand side of a sum in an equality. Consequence of addcan2d 7437. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
addcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
addcan2ad.4 | ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) |
Ref | Expression |
---|---|
addcan2ad | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcan2ad.4 | . 2 ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) | |
2 | addcand.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addcand.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | addcand.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | 2, 3, 4 | addcan2d 7437 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
6 | 1, 5 | mpbid 145 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 (class class class)co 5565 ℂcc 7118 + caddc 7123 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-resscn 7207 ax-1cn 7208 ax-icn 7210 ax-addcl 7211 ax-addrcl 7212 ax-mulcl 7213 ax-addcom 7215 ax-addass 7217 ax-distr 7219 ax-i2m1 7220 ax-0id 7223 ax-rnegex 7224 ax-cnre 7226 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2613 df-un 2987 df-in 2989 df-ss 2996 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-br 3807 df-iota 4918 df-fv 4961 df-ov 5568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |