![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bd0el | GIF version |
Description: Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-bd0el | ⊢ BOUNDED ∅ ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdeq0 10943 | . 2 ⊢ BOUNDED 𝑦 = ∅ | |
2 | 1 | bj-bdcel 10913 | 1 ⊢ BOUNDED ∅ ∈ 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ∅c0 3267 BOUNDED wbd 10888 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-bd0 10889 ax-bdim 10890 ax-bdn 10893 ax-bdal 10894 ax-bdex 10895 ax-bdeq 10896 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-dif 2984 df-in 2988 df-ss 2995 df-nul 3268 df-bdc 10917 |
This theorem is referenced by: bj-d0clsepcl 11005 bj-bdind 11010 |
Copyright terms: Public domain | W3C validator |