![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvrex | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
cbvral.1 | ⊢ Ⅎ𝑦𝜑 |
cbvral.2 | ⊢ Ⅎ𝑥𝜓 |
cbvral.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2220 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2220 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | cbvral.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
4 | cbvral.2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | cbvral.3 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvrexf 2573 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 Ⅎwnf 1390 ∃wrex 2350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 |
This theorem is referenced by: cbvrmo 2577 cbvrexv 2579 cbvrexsv 2590 cbviun 3717 rexxpf 4505 isarep1 5010 rexrnmpt 5336 elabrex 5423 |
Copyright terms: Public domain | W3C validator |